Dynamic risk model for Rift Valley fever outbreaks in Kenya based on climate and disease outbreak data

dc.contributor.authorGikungu, David
dc.contributor.authorWakhungu, Jacob
dc.contributor.authorSiamba, D.N
dc.contributor.authorNeyole, Edward
dc.date.accessioned2019-04-28T11:19:52Z
dc.date.available2019-04-28T11:19:52Z
dc.date.issued2015-10-18
dc.description10.4081/gh.2016.377en_US
dc.description.abstractRift Valley fever (RVF) is a mosquito-borne viral zoonotic disease that occurs throughout sub-Saharan Africa, Egypt and the Arabian Peninsula, with heavy impact in affected countries. Outbreaks are episodic and related to climate variability, especially rainfall and flooding. Despite great strides towards better prediction of RVF epidemics, there is still no observed climate data-based warning system with sufficient lead time for appropriate response and mitigation. We present a dynamic risk model based on historical RVF outbreaks and observed meteorological data. The model uses 30-year data on rainfall, temperature, relative humidity, normalised difference vegetation index and sea surface temperature data as predictors. Our research on RVF focused on Garissa, Murang’a and Kwale counties in Kenya using a research design based on a correlational, experimental, and evaluational approach. The weather data were obtained from the Kenya Meteorological Department while the RVF data were acquired from International Livestock Research Institute, and the Department of Veterinary Services. Performance of the model was evaluated by using the first 70% of the data for calibration and the remaining 30% for validation. The assessed components of the model accurately predicted already observed RVF events. The Brier score for each of the models (ranging from 0.007 to 0.022) indicated high skill. The coefficient of determination (R2) was higher in Garissa (0.66) than in Murang’a (0.21) and Kwale (0.16). The discrepancy was attributed to data distribution differences and varying ecosystems. The model outputs should complement existing early warning systems to detect risk factors that predispose for RVF outbreaks.en_US
dc.description.sponsorshipAuthors thank Kenya Meteorological Department for providing weather dataen_US
dc.identifier.issn19707096
dc.identifier.urihttp://erepository.kibu.ac.ke/handle/123456789/734
dc.language.isoenen_US
dc.publisherPAGEpress-Geospatial Healthen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectRift Valley Feveren_US
dc.subjectClimateen_US
dc.subjectRisk Modelen_US
dc.titleDynamic risk model for Rift Valley fever outbreaks in Kenya based on climate and disease outbreak dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gikungu_Dynamic risk model for Rift Valley fever outbreaks in Kenya based on climate and disease outbreak data.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Full text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: