Some Irreducible 2-Modular Codes invariant Under The Symplectic Group S6(2)

dc.contributor.authorChikamai, Lucy W.
dc.contributor.authorMoori, Jamshid
dc.contributor.authorRodrigues, Bernardo G.
dc.date.accessioned2019-04-29T10:27:44Z
dc.date.available2019-04-29T10:27:44Z
dc.date.issued2014-01-01
dc.description.abstractWe examine all non-trivial binary codes and designs obtained from the 2-modular primitive permutation representations of degrees up to 135 of the simple projective special symplectic group S6(2). The submodule lattice of the permutation modules, together with a comprehensive description of each code including the weight enumerator, the automorphism group, and the action of S6(2) is given. By considering the structures of the stabilizers of several codewords we attempt to gain an insight into the nature of some classes of codewords in particular those of minimum weight.en_US
dc.identifier.urihttp://erepository.kibu.ac.ke/handle/123456789/746
dc.language.isoenen_US
dc.publisherGLASNIK MATEMATIˇ CKIen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectIrreducibleen_US
dc.subjectModular Codesen_US
dc.subjectSymplectic Groupen_US
dc.titleSome Irreducible 2-Modular Codes invariant Under The Symplectic Group S6(2)en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chikamai_Some irreducible 2-modular codes invariant under the symplectic group s6.pdf
Size:
283.34 KB
Format:
Adobe Portable Document Format
Description:
Full text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: