Nonparametric estimatorfor the standardized sum using edgeworth expansions
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
iosr
Abstract
This article makes three contributions. First, we introduce a computationally efficient estimator for the component functions in additive nonparametric regression exploiting a different motivation from the marginal integration estimator of Linton and Nielsen. Our method provides a reduction in computation of order n which is highly significant in practice. Second, we define an efficient estimator of the additive components, by inserting the preliminary estimator into a backfitting˙ algorithm but taking one step only, and establish that it is equivalent, in various senses, to the oracle estimator based on knowing the other components. Our two-step estimator is minimax superior to that considered in Opsomer and Ruppert, due to its better bias. Third, we define a bootstrap algorithm for computing pointwise confidence intervals and show that it achieves the correct coverage.
Description
Keywords
Instrumental variables, Kernel estimation, Marginal integration