Show simple item record

dc.contributor.authorMutua., Benedict Mwavu.
dc.contributor.authorOdongo., V.O.
dc.contributor.authorOnyando., J.O.
dc.contributor.authorBecht, R.
dc.date.accessioned2019-05-06T18:03:11Z
dc.date.available2019-05-06T18:03:11Z
dc.date.issued2013-09-01
dc.identifier.urihttp://erepository.kibu.ac.ke/handle/123456789/864
dc.description.abstractSimulation models are widely used for studying physical processes such as surface runoff, sediment transport and sediment yield in catchments. Most models need case-specific empirical data for parameterization before being applied especially in regions other than the ones they have been developed. Sensitivity analysis is usually performed to determine the most influential factors of a model so that they can be prioritized for optimization. In this way uncertainties in model outputs can be reduced considerably. This study evaluates the commonly used modified universal soil loss equation (MUSLE) model used for sediment yield simulation for the case of the upper Malewa catchment in Kenya. The conceptual factors of the model are assessed relative to the hydrological factors in the model. Also, the sensitivity of the model to the choice of the objective function in calibration is tested. The Sobol' sensitivity analysis method was used for evaluating the degree of sensitivity of the conceptual and hydrological factors for sediment yield simulations using the MUSLE model. Nash-Sutcliffe Efficiency (NSE) and the modified Nash-Sutcliffe Efficiency (NSEm) are used to test the sensitivity of the model to the choice of the objective function and robustness of model performance with sediment data measured from upper Malewa catchment, Kenya. The results indicate that the conceptual factors are the most sensitive factors of the MUSLE model contributing about 66% of the variability in the output sediment yield. Increased variability of sediment yield output was also observed. This was attributed to interactions of input factors. For the upper Malewa catchment calibration of the MUSLE model indicates that the use of NSEm as an objective function provides stable results, which indicates that the model can satisfactorily be applied for sediment yield simulations.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectMUSLESobol'sensitivity analysisSediment yieldObjective functionUpper Malewa catchmenten_US
dc.titleSensitivity analysis and calibration of the modified universal soil loss equation (MUSLE) for the upper Malewa catchment, Kenyaen_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States