Show simple item record

dc.contributor.authorErrahali, Younes J.
dc.contributor.authorTaka, Equar
dc.contributor.authorAbonyo, B. O.
dc.contributor.authorHeiman, Ann S.
dc.date.accessioned2019-06-07T08:31:07Z
dc.date.available2019-06-07T08:31:07Z
dc.date.issued2009
dc.identifier.uri10.1089/jir.2008.0051
dc.identifier.urihttp://erepository.kibu.ac.ke/handle/123456789/1176
dc.description.abstractThe underlying infl ammation present in chronic airway diseases is orchestrated by increased expression of CC chemokines that selectively recruit leukocyte populations into the pulmonary system. Human CCL26 signals through CC chemokine receptor 3 (CCR3), is dramatically upregulated in challenged asthmatics, and stimulates recruitment of eosinophils (EOSs) and other leukocytes. CCL26 participates in regulation of its receptor CCR3 and modulates expression of a variety of chemokines in alveolar type II cells. Utilizing the A549 alveolar type II epithelial cell culture model, we carried out studies to test the hypothesis that CCL26-siRNA treatment of these cells would ameliorate Th2-driven release of the eotaxins and other CCR3 ligands that would, in turn, decrease recruitment and activation of EOSs. Results demonstrate that CCL26-siRNA treatments decreased interleukin4-induced CCL26 and CCL24 expression by > 70%. CCL26-directed small-interfering RNA (siRNA) treatments signifi cantly decreased release of CCL5 (RANTES), CCL15 (MIP-1δ), CCL8 (MCP-2), and CCL13 (MCP-4). In bioactivity assays it was shown that EOS migration and activation were reduced up to 80% and 90%, respectively, when exposed to supernatants of CCL26-siRNA-treated cells. These results provide evidence that CCL26 may be an appropriate target for development of new therapeutic agents designed to alleviate the underlying infl ammation associated with chronic diseases of the airways.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.titleCCL26-targeted siRNA treatment of alveolar type II cells decreases expression of CCR3-binding chemokines and reduces eosinophil migration: implications in asthma therapyen_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States