

KIBABII UNIVERSITY

(KIBU)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

MAIN EXAMINATION YEAR ONE SEMESTER TWO EXAMINATIONS

FOR THE DEGREE OF BACHELORS OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE : CSC 121

COURSE TITLE : DISCRETE STRUCTURES II

DATE: 25/04/2023 TIME: 2.00 P.M. - 4.00 P.M. 2HRS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE (COMPULSORY) [30 MARKS]

State the pigeonhole principle and explain its implication. [3 marks] **b.** Suppose A and B are events with P(A) = 0.6, P(B) = 0.3 and $P(A \cap B) = 0.2$. find the probability that: i. A or B occurs 2 marks ii. Neither A nor B occurs [2 marks] c. Using appropriate notations differential between mod function and mod congruence [4 marks] **d.** Find the least positive value of x such that: i. $78+x \equiv 3 \pmod{5}$ 2 marks ii. $5x \equiv 4 \pmod{6}$ 2 marks What is First Order Logic (FOL)? How is it related to propositional logic and predicate logic? [2 marks] f. Using relevant examples, differentiate between linear homogeneous recurrences and linear non-homogeneous recurrences. 2 marks Prove that $2^n + 6*9^n$ is always divisible by 7 for any positive integer n. [3 marks] **h.** Consider the recurrence relation: $a_n = 4a_{n-1} - 4a_{n-2}$. Find: i. The general solution [3 marks] The unique solution when initial conditions $a_0=1$ and $a_1=8$. ii. [3 marks] iii. $a_{10} = 8$. [2 marks] **QUESTION TWO [20 MARKS]** Using relevant arguments explain the meaning of symbolic logic. [2 marks] Differentiate between Modus Ponens and Modus Tollens using appropriate examples. 2 marks Find the values of a_4 for the recurrence relation $a_n = 2a_{n-1} + 3$, with $a_0 = 6$. [2 marks] d. Does there exist a connected graph with degree sequence 1, 1, 1, 1, 2, 2, 2? [2 marks] e. What is the solution of the recurrence relation: $a_n = -a_{n-1} - 4a_{n-2} + 4a_{n-3}$ with initial conditions a0=48, $a_1=6$ and $a_2=26$. [6 marks] Using Chinese Remainder Theorem, find a positive integer(s) (X) such that when it is divided by 11 it gives a remainder 7, when divided by 13 the remainder is 10 and when divided by 15 the remainder is 13. [6 marks]

QUESTION THREE [20 MARKS]

a. Define the terms

i.	Equiprobable space	[1 mark]
ii.	Expectation	[1 mark]
iii.	Binomial distribution	[1 mark]
iv.	Random variable	[1 mark]

- **b.** Given E as an event in a sample space with P(E) > 0. Find the condition probability of A given E. 2 marks
- c. A fair coin is tossed 6 times, call head a success:

i.	Find the probability that exactly two success occurs	[3 marks]
ii.	The probability of getting at least four successes.	[3 marks]
iii.	The probability of getting no success.	[2 marks]

d. Given the distribution below:

X_i	1	3	4	5	
Pi	0.4	0.1	0.2	0.3	

Find the expectation E(X), the Variance, Var(X) and the standard deviation [Var(X)]1/2 of the distribution. [6 marks]

QUESTION FOUR [20 MARKS]

What is computation complexity? Differentiate between NP-hard and NP-complete problem

[3 marks]

[1 mark]

b. Explain the condition that a graph should have in order to form a Eurelian path?

[3 marks]

Graph G is represented by the following adjacency matrix A

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

- i. Draw the graph. [3 marks]
- ii. Determine whether G is Hamiltonian graph. Justify your answer. [3 marks]
- iii. Determine whether G is a tree. Justify your answer 2 marks
- d. What is a spanning tree? Using Kruskal's algorithm find the minimum spanning tree for the graph below. [6 marks]