

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS

COURSE CODE:

MAP 322

COURSE TITLE:

GROUP THEORY II

DATE:

14/04/23

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

 a. Define the following The center of a Group Conjugacy class b. State the consequence of the class equation Work out the Conjucacy classes of the symmetric group S₃ d. Work out the center of D₄ e. Let G be a group of order pⁿ where p is prime. Show that G has a non-trivial content of the content of	(2marks) (2marks) (2marks) (4 marks) (2 marks) vial center (5 marks)
f. Define the followingi. P- subgroupii. Normalizer	(2 marks) (2 marks)
 g. State the following theorems i. First Sylow theorem ii. Third Sylow theorem h. Find the order of the alternating group A₅. Hence by Cauchy's theorem its subgroups 	(2 marks) (2 marks) find the order of (5 marks)
QUESTION TWO (20MARKS)	
 a. Define the following Maximal normal subgroup Supersoluble Chief series Soluble b. Show that all finite abelian groups are soluble (6 marks) c. Show that every finite group has a composition series (6 marks) 	(2 marks) (2 marks) (2marks) (2marks)
QUESTION THREE (20MARKS)	
 a. Define the following Nilpotent group Nilpotency class Central series Lower central series b. Show that every nilpotent group is solvable Show that a group G is nilpotent if and only if it has a central series 	(2marks) (2 marks) (2 marks) (2 marks) (6 marks) (6marks)

QUESTION FOUR (20MARKS)

- a. State the following theorems
 - i. Fundamental theorem of finite abelian groups

(3 marks)

ii. Fundamental theorem of finitely generated abelian groups

(3marks)

- b. Use the fundamental theorem of finite abelian groups to classify all abelian groups of order 540. (7marks)
- c. Show that a finite abelian group is a p-group if and only if its order is a power of p
 (7 marks)

QUESTION FIVE (20MARKS)

a. Define the following

i. External direct product

(2marks)

ii. Internal direct product

(2marks)

- b. Show that if G is the internal direct product of H and K, then G is isomorphic to the external direct product H×K (11 marks)
- c. Let G be a group with subgroups H and K. Suppose that G = HK and $H \cap K = \{ 1_G \}$. Show that every element g of G can be written uniquely as hk for $h \in H$ and $k \in K$ (5 marks)