(Knowledge for Development) ## KIBABII UNIVERSITY **UNIVERSITY EXAMINATIONS** **2022/2023 ACADEMIC YEAR** THIRD YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN **MATHEMATICS** COURSE CODE: **MAP 322** COURSE TITLE: **GROUP THEORY II** DATE: 14/04/23 TIME: 2:00 PM - 4:00 PM ### INSTRUCTIONS TO CANDIDATES Answer Question ONE and Any other TWO Questions TIME: 2 Hours This Paper Consists of 3 Printed Pages. Please Turn Over. # QUESTION ONE (30MARKS) | a. Define the following The center of a Group Conjugacy class b. State the consequence of the class equation Work out the Conjucacy classes of the symmetric group S₃ d. Work out the center of D₄ e. Let G be a group of order pⁿ where p is prime. Show that G has a non-trivial content of the of | (2marks) (2marks) (2marks) (4 marks) (2 marks) vial center (5 marks) | |---|--| | f. Define the followingi. P- subgroupii. Normalizer | (2 marks)
(2 marks) | | g. State the following theorems i. First Sylow theorem ii. Third Sylow theorem h. Find the order of the alternating group A₅. Hence by Cauchy's theorem its subgroups | (2 marks)
(2 marks)
find the order of
(5 marks) | | QUESTION TWO (20MARKS) | | | a. Define the following Maximal normal subgroup Supersoluble Chief series Soluble b. Show that all finite abelian groups are soluble (6 marks) c. Show that every finite group has a composition series (6 marks) | (2 marks)
(2 marks)
(2marks)
(2marks) | | QUESTION THREE (20MARKS) | | | a. Define the following Nilpotent group Nilpotency class Central series Lower central series b. Show that every nilpotent group is solvable Show that a group G is nilpotent if and only if it has a central series | (2marks)
(2 marks)
(2 marks)
(2 marks)
(6 marks)
(6marks) | ### **QUESTION FOUR (20MARKS)** - a. State the following theorems - i. Fundamental theorem of finite abelian groups (3 marks) ii. Fundamental theorem of finitely generated abelian groups (3marks) - b. Use the fundamental theorem of finite abelian groups to classify all abelian groups of order 540. (7marks) - c. Show that a finite abelian group is a p-group if and only if its order is a power of p (7 marks) #### **QUESTION FIVE (20MARKS)** a. Define the following i. External direct product (2marks) ii. Internal direct product (2marks) - b. Show that if G is the internal direct product of H and K, then G is isomorphic to the external direct product H×K (11 marks) - c. Let G be a group with subgroups H and K. Suppose that G = HK and $H \cap K = \{ 1_G \}$. Show that every element g of G can be written uniquely as hk for $h \in H$ and $k \in K$ (5 marks)