

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

FORTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR DEGREE OF BACHELOR OF

SCIENCE MATHEMATICS

COURSE CODE: MAP 413

COURSETITLE: FUNCTIONAL ANALYSIS

DATE: 25/4/2023 TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other two questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - Metric space i.
 - Normed space ii.
 - b) Let X be a set of all real valued functions, x, y, z of an independent variable t that are defined and continuous on an interval $\tau = [a, b]$. Denote the set C[a, b] as C[a, b] = $\{x: x(t)\}\$ is defined and contionous on [a, b] and let a metric on C[a, b] be given by $d(x,y) = \max_{t \in \tau} |x(t) - y(t)|$. Show that this set together with the metric d is a metric space

QUESTION TWO (20 MARKS)

ii.

- a) Define the following terms
 - Bounded set i.
 - Bounded sequence b) Given X = (x, d) is a metric space show that
 - A convergent sequence X is bounded and its limit is unique
 - If $x_n \to x$ and $y_n \to y$ in X, then $d(x_n, y_n) \to d(x, y)$ ii.
- c) Show that every convergent sequence in a metric space is a Cauchy sequence

QUESTION THREE (20 MARKS)

- a) Show that the space \mathcal{L}^{∞} is complete
- b) Show that the space \mathcal{L}^p $1 \le p \le \infty$ is complete
- c) Give an example of an incomplete metric space

OUESTION FOUR (20 MARKS)

- a) Define the following terms
 - i. Complete space
 - Banach space ii.
- b) Show that the Euclidean space \mathbb{R}^n is a normed space
- c) Show that the space C[a,b] with norm given by $|x| = \max_{t \ni \tau} |x(t)|$ where $\tau =$ [a, b] is a Banach space

QUESTION FIVE (20 MARKS)

- a) Show that every finite dimensional subspace Y of a normed space X is complete
 - b) Define the terms
 - i. Equivalent norms
 - ii. Compactness
- c) State Riesz's Lemma