

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

MAA 224

COURSE TITLE:

ORDINARY DIFFERENTIAL EQUATIONS I

DATE: 13/4/2023

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

- (a) Define the following terns
 - i. Differential equation
 - ii. Initial Value Problem
 - iii. Order of differential equation (3 marks)
- (b) Determine the order and linearity of the following ordinary differential equation

$$\left(\frac{d^5y}{dx^5}\right)^{\frac{7}{2}} + 4\left(\frac{dy}{dx}\right)^6 = x^{10}y$$
 (2 marks)

- (c) Using an appropriate method, solve $\frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2}$ (4 marks)
- (d) Use operator method to solve $\frac{d^3y}{dx^3} 2\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{3x}$ (6 marks)
- (e) Show that $\frac{dy}{dx} = \frac{x^2}{y + x^3 y}$ is separable and find its particular solution under the condition y(0) = -2 (4 marks)
- (f) Verify that the functions x and xe^x are linearly independent solutions of

$$x^{2} \frac{d^{2}y}{dx^{2}} - x(x+2)\frac{dy}{dx} + (x+2)y = 0$$
 (6 marks)

(g) Test for exactness and solve the following ordinary differential equation $(\cos x - x \sin x + y^2)dx + 2xy dy = 0$ (5 marks)

QUESTION TWO (20 MARKS)

(a) Solve
$$\frac{dy}{dx} = \frac{xy^2 + x}{x^2y + y}$$
 (4 marks)

(b) Solve
$$(3y - 7x + 7)dx - (7y - 3x + 3)dy = 0$$
 (7 marks)

(c) A loaf of bread is removed from an oven at a temperature of 300 ^{0}c and placed in a room whose temperature is 70 ^{0}c . 3 minutes later, the temperature of the bread is $200 \, ^{0}c$.

i. Find its temperature function at any time t. (7 marks)

ii. How long will it take to cool to $150^{\circ}c$. (2 marks)

QUESTION THREE (20 MARKS)

- (a) Write the standard form of a linear first order ordinary differential equation giving an example. (2 marks)
- (b) Use operator method to solve $2\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = x$ (7 marks)
- (c) Solve the non-linear equation $x^2 \frac{dy}{dx} 2xy = 3y^4$ (6 marks)
- (d) Solve the Cauchy-Euler's equation

$$x^{3} \frac{d^{2}y}{dx^{2}} + 5x^{2} \frac{d^{2}y}{dx^{2}} + 7x \frac{dy}{dx} + 8y = 0$$
 (5 marks)

QUESTION FOUR (20 MARKS)

(a) Use the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x^2 + 1}$$
 (8 marks)

(b) Test for exactness then solve the following differential equations

i.
$$(y^2 - x)dx + 2ydy = 0$$
 (7 marks)

ii.
$$(\cos(x+y^2)+3y) dx + (2y\cos(x+y^2)+3x))dy = 0$$
 (5 marks)

QUESTION FIVE (20 MARKS)

(a) Use the method of undetermined coefficients to solve

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = x^2 + x$$
 (8 marks)

(b) Solve the following differential equations using appropriate method

i.
$$\frac{dy}{dx} = \frac{xy + y^2}{x^2 - xy}$$
 (5 marks)

ii.
$$(x + 2y - 1)dx + (3x + 6y)dy = 0$$
 (7 marks)