

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023ACADEMIC YEAR

FORTH YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (CHEMISTRY)

COURSE CODE: SCH 411

COURSE TITLE: SPECTROSCOPY AND SEPARATION

DATE: 19/04/2023 TIME: 2:00-4:00pm

INSTRUCTIONS TO CANDIDATES

Time: 2 Hours

Answer question ONE and any other TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 MARKS]

a)	Define the following terms:	[5 marks]
	i) Spectroscopy.	
	ii) Transmittance.	
	iii) Fermi resonance.	
	iv) Electromagnetic radiation.	
	v) Combination bands.	
b)	Mention two (2) reasons why wave number is used in the measurement	of IR absorption
	instead of wavelength.	[2 marks]
c)	Calculate the number of vibration modes of the following compounds. i) NH ₃	[2 marks]
	ii) C ₂ H ₂	
d)	Give the relationship between the strength of the magnetic field, energy	and the resonance
	frequency of NMR.	[1 mark]
e)	State three (3) rules that govern the splitting patterns in the proton NMR	spectra of organic
	compounds.	[3 marks]
f)	Name the variables that characterize NMR with their appropriate units.	[2 marks] into the structure
8,	compound.	[2 marks]
h	and is a carboxylic acid that contain bromine ator	m: C ₄ H ₇ O ₂ Br. The
	peak at 10.97 ppm was moved onto the chart for clarity.	

i. Propose the structure of the carboxylic acid

[3 marks]

ii. Assign peaks of the protons that give rise to the structure you proposed in (i) above

[2 marks]

- i) Gas chromatography (GC) is an analytical methodology, which was devised by Nobel Laureate, Martin, et al. in 1952. It is widely commercialized and used in various industries, capable of both of quantitative and qualitative analysis.
 - i. Explain the working principle of partition GC.

[3 marks]

ii. List four (4) characteristics of carrier gas used in GC.

[2 marks]

iii. Explain the function of guard column in HPLC and why it is not in GC sytems

[3 marks]

QUESTION TWO [20 MARKS]

a. Predict the elution order of the following solutes in reversed phase HPLC

[4 marks]

- b. Derivatization is the process of chemically modifying a compound to produce a new compound which has properties that are suitable for analysis.
- c. Give four reasons why derivatization is necessary in gas chromatography

[2 marks]

- d. With help of equations, explain the following derivatization techniques.
 - a) Silylation

[2.5 marks]

b) Acylation

[2.5 marks]

e. The figure below is diagram for electron capture detector (ECD), study it and answer the questions that follows.

i. Explain basis of its operations

ii. Name four species that are separated by this detector [2 marks]

iii. Name two advantages of using this detector [2 mark]

QUESTION THREE [20 MARKS]

- a. Differentiate between the following terms as use in chromatography.
 - i. Normal phase and Reverse phase.

[2 marks]

[5 marks]

ii. Isocratic elution and gradient elution.

[2 marks]

b. Using the mass spectrum of 2-pentanone ($C_5H_{10}O$) shown below, answer the questions that follow about its fragmentation.

- i. Draw a valid resonance structure of the molecular ion (m/z = 86). Explain the source of the small peak at m/z = 87. [3 marks]
- ii. Important decomposition pathways for the molecular ion of carbonyl-containing compound such as 2-pentanone involves α-cleavage. Beginning with both viable α-cleavage decomposition pathways, draw fragmentation mechanisms that lead to ions with m/z values of 71, 43, 15. Make sure your mechanisms account for two different ions with m/z values of 43.
- iii. The other major decomposition pathway arises from a McLafferty rearrangement of the molecular ion followed by the loss of an ethylene gas molecule. Show an electron-pushing mechanism for this decomposition which will rationalize the peak with a value of m/z = 58. [3 marks]
- c. The flow diagram below represents HPLC system. Study it and answer the questions that follow.

i. Name and state the function of part A, B, C and D.

[4 mars]

ii. Explain importance of having degassing unit in HPLC system.

[2 marks]

QUESTION FOUR [20 MARKS]

Study the IR, 13 C NMR and 1 H NMR spectra for an unknown compound with the formula $C_6H_{10}O_2$, then answer the question on the next page.

- i. Determine degrees of unsaturation in this compound and explain its significance [4 marks]
- ii. In the IR, what does the signal at about 1740 suggest? [2 marks]
- iii. In the ¹³C NMR, what does the chemical shift of the signal at about 105 suggest? [2 marks]
- iv. In the ¹H NMR, what does the chemical shift of the signal at about 5.2 suggest? [2 marks]
- v. In the ¹H NMR, what does the integration of the signal at about 2.3 suggest? [2 marks]
- vi. In the ¹H NMR, what does the splitting pattern of the signal at about 1.0 suggest? [2 marks]
- vii. Deduce the structure of this unknown compound [6 marks]

APPENDICES

Approximate IR Absorption Frequencies

Bond	Frequency (cm ⁻¹)	Intensity
O-H (alcohol)	3650-3200	Strong, broad
O-H (carboxylic acid)	3300-2500	Strong, very broad
N-H	3500-3300	Medium, broad
C-H	3300-2700	Medium
C≡N	2260-2220	Medium
C≡C	2260-2100	Medium to weak
C=O	1780-1650	Strong
C-O	1250-1050	Strong

Approximate ¹H NMR Chemical Shifts

Hydrogen	ð (ppm)
CH ₃	0.8-1.0
CH ₂	1.2-1.5
CH	1.4-1.7
C=C-CH _x	1.7-2.3
O=C-CH _x	2.0-2.7
Ph-CH _x	2.3-3.0
≡C-H	2.5
R ₂ N-CH _x	2.0-2.7
I-CH,	3.2
Br-CH _y	3.4
CI-CH _x	3.5
F-CH _x	4.4
O-CH _x	3.2-3.8
C=CH	4.5-7.5
Ar-H	6.8-8.5
O=CH	9.0-10.0
ROH	1.0-5.5
ArOH	4.0-12.0
RNH _x	0.5-5.0
CONH	5.0-10.0
RCOOH	10-13

Approximate 13C NMR Chemical Shifts

Carbon	δ (ppm)
Alkanes	
Methyl	0-30
Methylene	15-55
Methine	25-55
Quaternary	30-40
Alkenes	
C=C	80-145
Alkynes	
C=C	70-90
Aromatics	110-170
Benzene	128.7
Alcohols, Ethers	
C-O	50-90
Amines	
C-N	40-60
Halogens	
C-F	70-80
CCI	25-50
C-Br	10-40
C-(-20-10
Carbonyis, C=O	
R ₂ C=O	190-220
RXC=O (X = O or N)	150-180

	Type of Vibration	Frequency (cm ⁻¹)	intensity	Page Reference
С-Н	Alkines (stretch)	3000-2850		29
4 1	-CHatt (bend)	1450 and 1375	m	
	CVI2141 (benul)	1465	m	
	Alkenes (stretch)	3100-3000	.	31
	(our-of-plane bend)	1000-650	S S	
	Aromatics (stretch)	3150-3050		41
	(our-of-plane bend)	900-690	,	
	Alkyne (stretch)	ca. 3300		33
	Aldchyde	2900-2800	w	54
		2800-2700		J
C-C	Alkane	Not interpretative	and the latest the	
C=C	Alkeno	1680-1600	n)w	31
	Aromatic	1600 and 1475	10)W	41
C = C	Alkyne	2250-2100	W-41	33
C=O	Aldehyde	1740-1720		54
	Kelone	1725-1705		36
	Carsoxylic acid	1725-1700		60
	Ester	1750-1730		62
	Amide	1680-1630		68
	Anhydride 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1810 and 1760		71
	Acid ch)oride	1800		70
C-0	Alcohols, ethers, esters, carboxylic acids, anhydrides	1300-1000		45, 48.
				60, 62, and 71
о-н	Alcohols, phenols			
	Free	3650-3600	m	47
	H-bunded 1997	3400-3200	m	47
3000	Carooxylic ucids	3400-2400	I II	61
N-H	Primary and secondary amines and amides	阿纳斯斯斯		
	(stretch)	3500-3100	m	72
	(band)	1640-1550	ru-8	72
C-N	Amines	1350-1000	m-s	72
C-N	Imines and oximes	1690-1640	\\$\4-S	75
C⊨N	Nimiles	2260-2240	In In	75
XCY	Allenes, kelenes, isocyanates, isothiocyanates	2270-1949	me-s	75
4-0	Nino (R-NO ₂)	1550 and 1350	a	77
ў-Н	Mercaptans	2550	w	79
6+O	Sulfoxides	1050	8	79
	Sulfones, sulfanyl chlorides, sulfates, sulfonamides	1375-1300 and 1350-1140		80
`~X	Pluoride	1400-1000		83
	Chloride	785-540		83
	Bromide, indide	<667	8	83

APPROXIMATE CHEMICAL SHIFT RANGES (PPM) FOR SELECTED TYPES OF PROTONS®

	ALLES TABLES	TO CONTROL OF THE PROPERTY OF	
R-CH ₃	0.7 + 1.3	. R-N-С-Ш	2.2 - 2.9
$R + CH_2 - R$	1.2+1.4		6.6
H ₃ CH	1.4 - 1.7	R-S-C-H	2.0 - 3.0
R-C=C-C-H	1.6 = 2.6	т-ф-н	2,0 - 4.0
О R-C-Ç-H, H-С-	{-II 2.1+2.4}	вг-ф-н	2,7 - 4.1
		сі-¢-н	3.1 - 4.1
о ro-с-¢-н, но-	Үт С+⇔н 21+25	0 R-§-О-С-II	ca, 3.0
N≡С-Ç-II	2.1 + 3.0	ВО-С- н , но-С-н	3.2 - 3.8
С -ф- н	2.3 - 2.7	0 R-С-0-¢- н	3,5 - 4.8
<-C≡C-H	1.7 – 2.7	O ₂ N−C−H	4.1 - 4,3
?−S−H	var 1.0 = 4,0 ^{t/}		
⊱ N- H	var 0.5 – 4.0 ^{la}	ғ-¢-н	4.2 - 4.8
⊱о−н	var 0.5 - 5.0*	The second secon	
0-п	var 4.0 = 7.0°	R-C-C-H.	45-6,5
			6.5 8.0
_Ņ- ū	var 3 0 - 5.0h	q R-C-H	9.0 - 10,0
-С-Й- н	var 50 - 9.0°	R-C-OH	11.0 – 12,0