

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2022/2023 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER
MAIN EXAMINATION
FOR DEGREE OF BACHELOR OF
SCIENCE IN MATHEMATICS

COURSE CODE: MAP 412

COURSE TITLE: MEASURE THEORY

DATE: 28/4/2023 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other two questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - i. Ring
 - ii. Algebra
 - iii. $\sigma ring$
 - iv. σ algebra
- b) Show that if $f: X \to Y$ and F is a $\sigma ring$ of subsets of Y, then the class of all sets of the form $f^{-1}(B)$ where B is a $\sigma ring$ of subsets of X
- c) State the lemma on Monotone classes (LMC)

QUESTION TWO (20 MARKS)

- a) Define a measure
- b) Show that if R is a ring and μ is an extended real valued set function on R which is positive, countably additive and satisfies the condition $\mu(\emptyset) = 0$, then μ is a measure
- c) Define the terms
 - i. Countably additive
 - ii. Contraction

QUESTION THREE (20 MARKS)

- a) Show that if μ is measurable on a ring R, and define an extended real valued set function μ^* on H(B) by the formula $\mu^* = GLB\{\sum_{1}^{\infty} \mu(E_n) : A \subset U_1^{\infty} E_n, E_n \in \mathbb{R}, (n = 1, 2, ...)\}$ then
 - i. μ^* is positive
 - ii. $\mu^*(\emptyset) = 0$
 - iii. μ^* is monotone
 - iv. μ^* is countable sub additive
 - v. μ^* extends μ
- b) Define the following terms
 - i. Outer measure
 - ii. v-measure
- c) Show that if v is an outer measure, then the class M of v -measurable sets is a ring

QUESTION FOUR (20 MARKS)

- a) State the Unique Extension Theorem
- b) Show that if $\alpha_i \uparrow \alpha$ and $\beta_i \uparrow \beta$ then $\alpha_i \beta_i \uparrow \alpha \beta$
- c) Define a simple function

QUESTION FIVE (20 MARKS)

a) Explain the following terms

i.
$$f = g$$
 a.e

ii.
$$f \le g$$
 a.e

iii.
$$f = constant$$
 a.e

- iv. f is essentially bounded
- b) Show that if f_n is a sequence of integrable functions such that $f_n \ge 0$ a. e and $\lim\inf\int f_n\,du < \infty$ then there exists an integrable function f such that $f=\liminf f_n$ a.e and one has $\int f\,d\mu \le \liminf\int f_n\,d\mu$