

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (CHEMISTRY) AND B.EE

COURSE CODE:

SCH 322

COURSE TITLE:

RADIATION AND NUCLEAR CHEMISTRY

DATE: 19/04/2023

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

ANSWER QUESTION ONE AND ANY TWO OF THE REMAINING

THIS PAPER CONSISTS OF 3 PRINTED PAGES

KIBU OBSERVES ZERO TOLERANCE TO examination

QUESTION ONE (30 MARKS)	(5 marks)
(a) Define the following terms	
(i) Nuclear chemistry	
(ii) Radiations	
(iii) Nucleons	
(iv) Radioisotopes	
(v) Film budges	(2 marks)
(b) Distinguish between fusion reaction and fission reaction	
(b) Distinguish between fusion reaction and fission reaction (c) Alpha(α), beta (β) and gamma (γ) rays differ from each other in nature and p	(3marks)
the three chief properties (d) Radioisotope 15P32 has a half-life of 15 days. Calculate the time in which the	
(d) Radioisotope 15P2 has a half-life of 15 days. Calculate the time in which	(4 marks
its 1.0 mg quantity will fall to 10% of the initial value	(2 marks)
(e) Determine the decay constant for carbon 14, if it has a half-life of 5730 years	(2 marks)
(f) State the Group Displacement Law'	(1 mark)
(g) Explain the meaning of radioactive disintegration series	(3 marks)
(h) State the three radioactive disintegration series (h) State the three radioactive disintegration series 3.7×10^{10} alpha part	icles per second
(h) State the three radioactive disintegration series (i) Calculate the half-life of radium-226 if 1 g of it emits 3.7×10^{10} alpha part (L= 6.023×10^{23})	•
(4marks)	(4 marks)
(i) Discuss some of the practical application of nuclear chemistry in	(1 1111111)
i. Analytical applications	
ii. Industrial exploration of leaks	
QUESTION TWO (20 MARKS)	(4 marks)
(a) Distinguish between isobars and isotones by giving an example for each	(2 marks)
(b) What is meant by bremsstrahlung radiation	(5 marks)
(c) Briefly explain how bremsstrahlung radiation occurs	(5 marks)
(d) Balance the following nuclear equations and identify X	()
$i{84}^{210}Po \rightarrow _{82}^{206}Pb + X$	
ii. $^{137}_{55}Cs \rightarrow X + ^{0}_{-1}e$	
$111\frac{26}{12}Mg + \frac{1}{1}P \rightarrow X + \frac{4}{2}He$	
iv. $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{36}Kr + ^{139}_{56}Ba + 3X$	
$V^{14}N + X \rightarrow {}^{17}O + {}^{1}P$	(2 marks)
1 C. Il - wing man life and half-life	
(e) Differentiate between the following mean fite and that the (f) How many α and β particles are emitted in passing down from ^{230}Th to ^{206}R (f) How many α and β particles are emitted in passing down from ^{230}Th to ^{206}R	(2marks)
QUESTION THREE (20 MARKS)	(5marks)
(a) Driefly describe the scintillation method of measuring radiations	(4 marks)
(b) Discuss the stability of nucleus in terms of neutron-proton ratio	(4 marks)
A D G., Jacoriba the discovery of radioactivity	(5 marks)
(d) Explain terrestrial radiation as a natural source of radioactive radiations	(2 marks)
(a) State two artificial sources of radioactive radiation	(2 11141113)

QUESTION FOUR (20 MARKS)

(a) A sample of 2 g $^{209}_{83}Bi$ with a half-life 2.7×10^7 years decays into stable isotope of thallium by emitting alpha particle. What would be the activity of the sample after 2 years? (3 marks)

(b) Using Einstein equation; $E = MC^2$, determine the energy released in the following reaction in kcal (4 marks)

$$^{7}_{3}Li$$
 + $^{1}_{1}H$ \rightarrow $^{4}_{2}He$ + $^{4}_{2}He$ + energy 7.16g 1.0078g 4.0026

(c) (i) Define binding energy

(2 marks)

ii) What is the binding energy for ${}^{11}_{5}B$ nucleus if its mass defect is 0.08181 amu? (4 marks)

(d) Tritium (3H) decays by beta emission to (3He) with a half-life of 12.26 years. A sample of a tritiated compound has an initial activity of 0.833Bq. Calculate the decay constant K and activity after 2.50 years. (4 marks)

(e) Based on the spin pairing, predict which one you would expect to be radioactive in each of the following pairs:

(3 Marks)

- (i) Cl-35 or Cl-36
- (ii) Ne-20 or Ne-17
- (iii) Ca-40 or Ca-45

QUESTION FIVE (20 MARKS)

(a) Explain Film badges as a method of detection and measurement of radioactivity. (10 marks)

(b) Show that $t_{\frac{1}{2}} = \frac{0.693}{1}$

(5 marks)

(c) 0.01 mg of Pu- 2 39 units has decay constant of 1.4 \times 10⁷ particles/ minute. What is its half-life (5 marks

1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 Nelum
H 10079				Key:														He
10000	beryllum .				omic numi							boron 5	carton 6	nitogen 7	8 anyther	fuorne 9	neon 10	
Li	Be				ymb								В	C	N	0	F	Ne
6 941	9.0122				of them rel		l.						10.811 aluminium	12.011 silcon	14.007 phosphorus	15,999 500ar	18 994 chiorne	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	P	S	CI	Ar
22,990 potassium	24,305 calcium		scandum	stanum	vanadum	chromium	manganese	iron	cobart	nichel	copper	2PC	26 982 gallium	28.086 germanum	30,974 arsenic	32.065 selenium	35.453 bromne	39 S45 Anypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19 098 rubidium	40.078 strontum		44.958 ytrum	47.867 Erronium	60.942 Askum	51,996 molybdenum	54.938 technetium	N/henum	fields	58 593 paladium	63.546 Silver	65.38 cadmium	59,723 Indium	72.61 te	74.922 antmony	78.96 sellutium	70.904 odine	83.80 senon
37	38		39 V	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54 V-
Rb	Sr		1	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
SS-ASS CARSIUM	B7.62 banyo		SS SOC	91,224 hatnium	92,908 tantalum	95,96 tungsten	rhenium	101.07 05mum	102.91 indun.	plasnum	107.87 pold	mercury	thallium	118.71 Wad	121.78 bismoth	polonium	astatine	ration
55	56	57.70	71	72	73	74	75	76	77	78	79	80	81 TI	82 Dh	83 Di	B4	85 A +	Rn
Cs	Ba		Lu	Hf	Ta	W	Re	Os	Ir 192.22	Pt	Au	Hg	TI 204.38	Pb	Bi	Po	At	[222]
132,91 francium	137.33 radium		174.97 Iserencium	178.49 nutremoralum	180 95 dubnium	183.84 Seaborgium	186.21 behrum	Nassum	memerum	CAPTHELACTION	rperigenium	ויייייייייייייייייייייייייייייייייייייי	113	unumquatum 114		116		
87	88	89-102 **	103	104 D.f	105 Dh	106	107 Dh	H5	Mt	110 De	Rg	Uub			Uup		line	Uuc
Fr	Ra		Lr	Rf	Db	Sg	Bh	ПЭ	IVIL	Ds	Ry	Jub	12141	7319	Jup	12931	543	[294]

*lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	67 Ho	Er	Tm	70 Yb
**actinoids	Ac Ac	Th	Pa Pa 231 04	92 U	Np	Pu Pu	Am	Cm	97 Bk	Cf	ES PES	100 Fm	Md	102 No