

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR THREE SEMESTER TWO EXAMINATIONS

FOR THE DEGREE OF
BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE

CSC 353E

COURSE TITLE

DIGITAL SYSTEM DESIGN

DATE: 19/04/2023

TIME:

2.00PM-4.00PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE (COMPULSORY) [30 MARKS]

a) Define "digital system design?"

- (2 marks)
- b) Outline four merits of using Hardware Descriptive Language in digital systems design
- (3 marks) State three advantages of using PLD over standard chips in design
- Distinguish between the following ways of implementing digital systems: (4 marks)
 - General purpose processors
 - Special purpose processors
- e) Describe the following three phases of physical design: placement, routing and static timing (7 marks)
- Write the entity and architecture VHDL code of the circuit below:

- Highlight the following modes of verification of a digital system
- (4 marks)

- i) Simulation
- ii) timing analysis
- iii) formal verification
- iv) hardware emulation

SECTION B

- Write the entity declaration of the following digital components in VHDL language: (5 marks)
 - i. Half adder

(5 marks)

- b) Write the architectural declaration of the following digital components in VHDL language: (5 marks)
 - i. Half adder

(5 marks)

ii. Full adder

a) State four advantages of Application Specific ICs chips over PLDs

(4 marks) (6 marks)

- b) Discuss the following phases of synthesis
 - i) Netlist generation
 - ii) Gate optimization
- c) Design a full adder by developing its truth and writing a VHDL code to implement the adder (10 marks)

QUESTION FOUR

- a) Discuss the significance of the following tasks in digital system design process: (10 marks)
 - Synthesis i)
 - Physical design ii)
 - Verification iii)
 - Testing iv)
- b) You are required to write a completed VHDL program that assigns signals using WITH _ SELECT_WHEN clauses for a 2-to-1 multiplexer. The multiplexer has w0, w1 and s as input signals and f as output signal. The truth table is shown below (10 marks)

Input, s	Output, f
w0	0
w1	1

OUESTION FIVE

a) Discuss the features of a HDL

(6 marks)

b) Distinguish between an entity and an architecture

(4 marks)

c) Study the architecture below and describe each line of code:

(10 marks)

ARCHITECTURE Behavior OF mux2to1 IS BEGIN

PROCESS (w0, w1, s)

BEGIN

IF s'0' THEN

 $f \le w0$;

ELSE

 $f \le w1$;

END IF:

END PROCESS;

END Behavior;