

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY

(KIBU)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR YEAR THREE SEMESTER TWO EXAMINATIONS FOR THE BACHELORS DEGREE

COMPUTER SCIENCE

COURSE CODE: CSC 354E

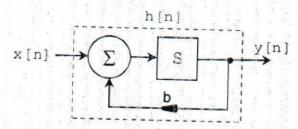
COURSE TITLE: SIGNALS AND SYSTEMS II

DATE: 18/04/2023 TIME: 2.00PM-4.00PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE (COMPULSORY-30 MARKS)


a) Given the signal x(t)=1, find its Laplace transform.

[5Marks]

b) Given that $\mathcal{L}(e^t) = 1/(s-1)$, find $\mathcal{L}(e^{at})$

[5Marks]

c) For the following LTI system with x[n] causal.

i) Find the difference equation that relates y[n] and x[n]

[3Marks]

ii) Determine H(z) the ROC, and the pole-zero plot.

[5Marks]

iii) Determine the impulse response h[z].

[2Marks]

d) Determine the Inverse Z-Transform of the function $F(z) = \frac{1}{z-a}$

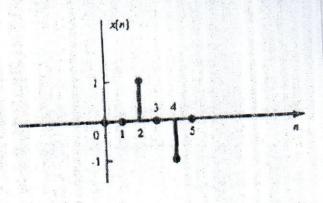
[6Marks]

e) Find the Laplace transform of $x(t) = \sin 2t$

[3Marks]

QUESTION TWO (20 marks)

a) Find the Laplace transform of the following step function


$$\begin{cases} 1, & 0 \le t < 2 \\ t - 2, & 2 \le t \end{cases}$$

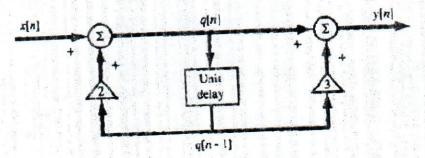
[5Marks]

- b) Given the impulse response h[n] of a discrete-time LTI system.
 - i) Determine and sketch the output y[n] of this system to the input x[n]. [10Marks]
 - ii) Without using the convolution technique.

[5Marks]

QUESTION THREE (20 MARKS)

a) Find the Laplace transform of the following functions


i)
$$f(t) = t^3 + 3t - 3$$

[3Marks]

ii)
$$f(t) = e^{3t} (t^3 + 3t - 3)$$

[4Marks]

b) Consider the discrete-time system. Write a difference equation that relates the output y[n] and the input x[n]. [13Marks]

QUESTION FOUR (20 MARKS)

a) Find the inverse Laplace transform of the following transforms

i)
$$F(s) = \frac{s+3}{s^2+4}$$

[6Marks]

ii)
$$F(s) = \frac{s+1}{s^2 - 9}$$

[6Marks]

b) Give the relation between Fourier and Laplace transform.

[3Marks]

c) Draw the block diagram of the LTI system described by $\frac{dy(t)}{dt} + y(t) = 0.1x(t)$ [5Marks]

QUESTION FIVE (20 MARKS)

a) Using the Laplace transform find the solution for the following system equation

$$y' - y = e^{3t}$$
, $y(0) = 2$.

[10Marks]

b) For an LTI system, we are given the Z-transform of the input and output Signals.

$$X(z) = \frac{1}{1 + z^{-2} + z^{-4}}, \qquad Y(z) = \frac{1}{2} + \frac{1}{4}z^{-1}$$

i) Determine the impulse response and sketch it.

[7Marks]

ii) Determine the DTFT of h[n].

[2Marks]

iii) iii) What is the region of convergence of? Sketch the DTFT on the z-plane[1Mark]