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Abstract 
Hydrological models are considered as necessary tools for water and envi-
ronmental resource management. However, modelling poorly gauged water-
sheds has been a challenge to hydrologists and hydraulic engineers. Research 
done recently has shown the potential to overcome this challenge through in-
corporating satellite based hydrological and meteorological data in the meas-
ured data. This paper presents results for a study that used the semi-distributed 
conceptual HBV Light Model to model the rainfall-runoff in the Mara River 
Basin, Kenya. The model simulates runoff as a function of rainfall. It is built 
on the basis established between satellite observed and in-situ rainfall, evapo-
ration, temperature and the measured runoff. The model’s performance and 
reliability were evaluated over two sub-catchments namely: Nyangores and 
Amala in the Mara River Basin using the Nash-Sutcliffe Efficiency which the 
model referred to as Reff and the coefficient of determination (R2). The Reff for 
Nyangores and Amala during the calibration and (validation) period were 
0.65 (0.68) and 0.59 (0.62) respectively. The model showed good flow simula-
tions particularly during the recession flows, in the Nyangores sub-catchment 
whereas it simulated poorly the short term fluctuations of the high-flow for 
Amala sub-catchment. Results from this study can be used by water resources 
managers to make informed decision on planning and management of water 
resources. 
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1. Introduction 

Kenya is characterized as water stressed country since the per capita water 
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availability is at 792 m3 with a population of approximately 40 million people 
[1]. With the increasing population, expanding urbanization, modernised life-
styles, climate changes and other global changes, the pressure for sustainable 
planning and management of the finite water resources is more evident than 
ever. 

This paper focuses on a study that was carried out in the Mara River Basin 
that cuts across Kenya and Tanzania. The Mara River Basin (MRB) covering a 
drainage area of 13,750 km2 is one of the catchments of Lake Victoria and forms 
part of the Upper Nile Basin. The Mara River (MR) which is about 395 km long 
is one of the Rivers supplying water into Lake Victoria throughout the year. The 
River originates from Mau Forest Complex which forms part of the upper basin. 
The Mara River Basin (MRB) is characterized by the extensive cultivated land 
and forested areas in the upper part, tropical savannah vegetation in the middle 
of the basin and one of the world famous Mara-Serengeti ecosystem towards the 
lower part of the Mara wetland form part of the extreme lower side of the Basin 
on the Tanzania side where the River drains into Lake Victoria. 

The Mara River Basin faces numerous interactions that require effective 
management to ensure sustainability of its water resources since many liveli-
hoods depend on it. The basin has undergone several changes over the last 50 
years as a result of increased human population [2]. 

The flow regime in the Mara River has changed over the years due to catch-
ment degradation. For instance, [3] in the study on Modelling the Impact of 
Land-Cover and Rainfall Regime Change Scenarios on the Flow of Mara River 
found out that there has been a decline in the dry season flow and increased 
peak flood frequency in recent years. In another study by [4] where these re-
searchers applied the USGS Geospatial Stream Flow Model in studying the im-
pact of land use/cover on the hydrology of MRB, it was found out that forests 
and savannah grasslands have been cleared and turned into agricultural lands. In 
addition, the long-term monitoring also identified several areas of concern in the 
upper catchment of the basin. For instance, the results showed that the Amala 
sub-catchment has experienced higher decline in average monthly flow levels 
over the last 15 years, transported higher sediment load per unit catchment area 
and has generally lower water quality than the Nyangores sub-catchment, sug-
gesting land degradation in this sub-catchment may be responsible for declines 
in water quantity and quality in the Mara River basin. 

In order to effectively plan for the water resource use and to protect it under 
the changing conditions, application of basin runoff models that can simulate 
flow regimes under different scenarios of change [5] is required. However, the 
availability of long term spatial and temporal quality hydro-meteorological data 
has been a challenge in many river basins in Kenya. In order to overcome this 
challenge, this study used the satellite observed rainfall products and the 30 m 
resolution Shuttle Radar Topography Mission (SRTM) DEM which were derived 
from open sources. The study applied a conceptual hydrological model, the Hy-
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drologiska Byrans Vattenavdelning model (HBV Light Model) for run-off simu-
lation of the measured rainfall. 

2. Materials and Methods 

The Mara River Basin which is a trans-boundary basin covers approximately 
13,750 km2. It lies between South Western Kenya and North Western Tanzania 
at between longitudes 33˚47'E and 35˚47'E and Latitudes 0˚28'S and 1˚52'S. The 
Napuiyapui swamp in the Mau Forest Complex, is the source for the Mara River 
where it flows at an altitude of approximately 3000 metres above sea level 
(m.a.s.l) South West before draining into Lake Victoria in Musoma Tanzania at 
an altitude of 1134 metres above sea level [6]. The Nyangores and Amala Rivers 
are the two main perennial tributaries of the Mara River and their respective 
sub-basins form part of the Upper catchment. The other tributaries are; Talek, 
Sand and Engare Ngobit rivers on the Kenyan side and the Bologonja River on 
the Tanzania side (Figure 1). The amount of annual rainfall in the basin varies 
from 1400 mm in the hills of the Mau Forest to 500 - 700 mm in the dry plains 
of north-west Tanzania [7]. 

The study used the HBV model which simulates the daily discharge using in-
put variables of rainfall, temperature and potential evapotranspiration [8]. The 
input data collected were checked for consistency as well as filling in the missing 
data gaps for precipitation, discharge and temperature datasets. The main ap-
proach used was the correlations between the three hydro-meteorological sta-
tions (Narok, Kericho and Kisii) data. Thereafter, multiple linear regressions 
were used to develop relationship equations which were then used to fill the 
missing data gaps. 

The records of only three out of the thirty six hydro-meteorological stations 
on the Kenyan side as shown in Figure 2 were processed. The data was recorded 
daily at 0900 hours and was expressed in millimetres per day (mm/day). The 
area average precipitation Parea was calculated as weighted mean of precipitation 
stations in and around the catchment. This was achieved through use of the 
Thiessen polygons. 

The temperature was calculated as weighted mean of the stations in and 
around the catchment after the missing data was filled using multiple linear re-
gressions. The data was obtained from the Kenya Metrological Department. 
Compared to other rivers within the Mara River basin, Nyangores and Amala 
Rivers have long term daily discharge data records. Readings of water levels for 
the two rivers were taken twice each day daily in the morning at 0600 hrs and in 
the evening at 1800 hrs. Rating curves were then used to estimate daily average 
discharges. 

2.1. Application of Hydrologiska Byrans Vattenavdelning  
(HBV Light) Model 

The HBV light model which is a semi distributed conceptual model was selected  
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Figure 1. Site Map of the trans-boundary Mara River Basin, showing the Mara River with its tributaries. Source: (Melesse, 
2012). 

 
to simulate the rainfall runoff processes in the two sub-catchments. The model 
was selected because of its suitability that has been demonstrated under different 
hydro climatic conditions in the world [9] [10]. The general structure and equa-
tions of HBV light model is summarized in Figure 3. The reservoirs are con-
nected to each other by means of exchange fluxes which define the amount of 
water between the different zones. Equations (1) and (2) give the general water 
balance. The HBV light model has four routines which include; the snow pack 
(not used in this research), soil moisture, response function and routing routines 
[11] as summarized in Figure 3. 

Input OutputS
t

∆
= −

∆
                           (1) 

where; ∆S = Change in Storge and ∆t = Change over time 

( )dP E Q SP SM UZ LZ lakes
dt

− − = + + + +                   (2) 

where; P is precipitation, E is evaporation, Q is runoff, SP is the snow pack, and 
SM is the soil moisture. The UZ and LZ are the upper and lower ground water 
zones. 

The HBV light model uses sub-catchments as the primary hydrological units.  
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Figure 2. Processed SRTM DEM showing the Elevation, Rainfall gauging stations and the River gauging stations of the Mara River 
Basin. 
 

 
Figure 3. General structure of the HBV model. 
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The catchments classifications of land use, and area-elevations are used as input 
into the model. The model can be run with daily precipitation time series data 
but higher resolution can also be used in the model. 

The channel routing is by a triangular weighing function through MAXBAS 
(length of weighing function). The soil moisture threshold for reduction of 
evapotranspiration defines LP. The maximal flow from the upper to lower 
groundwater box is defined by PERC; β is shape coefficient for the non-linear 
storage behaviour of the soil zone. 

The model uses a warming up period of one year [12]. The warm-up period 
refers to the time that the simulation will run before the final results are col-
lected and it allows the acclimatization of input data-set to the running condi-
tions normal to the system being simulated. 

2.2. Model Run 

The model was run in dynamic mode on a daily basis in order to simulate a 
combined period of eleven (11) years translating to a total of 4017 time steps. 
The model calibration and validation was done by through trial and error 
method. The Monte Carlo runs were generated to investigate the catchment re-
sponse characteristics, and to explore physically realistic model’s parameters 
ranges. Initial Monte Carlo simulations were generated using parameter values 
from the literature (tuned with preliminary model runs) to define possible pa-
rameter ranges as shown in Table 1. However, the time dependent units change 
for simulations with more aggregated time steps (15 and 30 days) were applied. 
 
Table 1. Parameters and their ranges applied during the Monte Carlo Simulations. 

Parameter Explanation Unit Minimum Maximum 

Soil and evaporation 
routine:     

FC Maximum soil moisture storage mm 100 550 

LP Soil moisture threshold for 3/4 0.3 1 

 
reduction of evaporation 

   
β Shape coefficient 3/4 1 5 

Groundwater and response routine: 
   

K0 Recession coefficient d−1 0.1 0.5 

K1 Recession coefficient d−1 0.01 0.2 

K2 Recession coefficient d−1 5.00E−05 0.1 

UZL Threshold for K0-outflow mm 0 70 

PERC 
Maximal flow from upper to lower 

GW-box 
mm/d 0 4 

Routing routine: 
    

MAXBAS Routing, length of d 1 2.5 

 
weighting function 
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Different parameter sets were produced by running more than 300,000 Monte 
Carlo Simulations (MCS) for each catchment representation of the Nyangores 
and Amala sub-catchments on daily time steps. The efficiency Reff value was used 
for assessment of simulations by the HBV model. The Reff value compares the 
prediction by the model with the simplest possible prediction, a constant value 
of the observed mean value over the entire period. Several model parameter sets 
with Reff comparable to the highest values were obtained. 

3. Results and Discussions 

The results show that in the Nyangores sub-catchment, a Reff > 0.65 was obtained 
after running, 250,000 MCS. In the case of Amala sub-catchment, a Reff > 0.59 
was obtained after running 100,000 simulations of the Monte Carlos. Based on 
the Nash-Sutcliffe Efficiency criteria, the performance of the model was within 
acceptable range as per the selected performance criteria. 

In addition, to visual observation of the hydrographs and evaluation of low 
flows (log Reff), the values of Reff > 0.65 and Reff > 0.59 were considered satisfac-
tory. The calibration results are shown in Figure 4 below and Table 2 together 
with their corresponding statistical measures for model performance assessment. 

 

 
(a) 

 
(b) 

Figure 4. (a) and (b). Simulated and Observed discharge in mm/day for Nyangores and Amala Sub-catchments re-
spectively for the calibration. (a). Nyangores Sub-catchment; (b). Amala Sub-catchment. 
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Table 2. Calibration and Validation parameters and model efficiency results for Nyan-
gores and Amala Sub-catchments for the period of 1996-2008 and 2009-2013 respectively. 

Calibration/Validation Parameters Units 
Nyangores  
catchment 

Amala  
catchment 

Parameters FC (mm) 408.61 350.00 

 
LP (3/4) 0.32 0.9.00 

 
β (3/4) 5.20 12.00 

 
K0 (d−1) 0.11 0.05 

 
K1 (d−1) 0.11 0.99 

 
K2 (d−1) 0.92 0.99 

 
UZL (mm) 46.75 56.36 

 
PERC (mm/d) 0.10 0.45 

 
MAXBAS (d) 1.50 15.00 

 
Reff (3/4) 0.62 0.48 

 
logReff (3/4) 0.60 0.46 

Calibration R2 (3/4) 0.73 0.65 

 
∆Q (mm/a) 0.00 0.00 

 
Reff (3/4) 0.65 0.59 

 
logReff (3/4) 0.63 0.57 

Validation R2 (3/4) 0.75 0.69 

 
∆Q (mm/a) −8.00 −131.00 

 
From the visual observation of the hydrographs in Figure 4, it indicates gen-

erally good flow simulations in particular during the recession flows, in the 
Nyangores sub-catchment with a bit of high peaks towards the end of the simu-
lation period. In comparison to the Amala sub-catchment, the short-term fluc-
tuations during the high-flow season were not modelled well. In fact, the model 
overestimated the discharge as clearly shown in the hydrograph. The mean an-
nual (∆Q) differences between observed and simulated runoff was negligible. 
The results show a good relationship between the simulated and observed low 
flows in the Nyangores catchment with a log Reff > 0.63 compared to the log 
Reff > 0.57 for the Amala sub-catchment. The coefficient of determination R2 
was >0.73 and >0.65 for the Nyangores and Amala sub-catchments respectively. 
The parameter values for which the model was highly sensitive (yielding good 
simulations) only for comparable small intervals, were related to the soil mois-
ture storage and runoff generation routine as shown in the standardized pa-
rameter values given in Table 2. The Table shows the smallest and largest pa-
rameter values that produced Reff > 0.65 and >0.59 for the Nyangores and Amala 
respectively. A satisfactory model performance (Reff > 0.65) was attained in 
Nyangores with a soil moisture storage, FC, in the range of 408 mm < FC < 514 
mm near the maximum parameter range whereas in Amala, the FC was lower, 
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ranging between 265 mm < FC < 350 mm. The run-off routine parameters PERC 
(maximum flow from upper to lower reservoirs) and UZL (threshold for K0 
flow) and the soil routine parameter, β (shape coefficient) were found to be the 
most sensitive parameters in that order in Nyangores sub-catchment. In Amala, 
the only sensitive parameters were K2, PERC and K1 respectively in that order. The 
K0 values for Nyangores and Amala were found to be 0.11 and 0.05 respectively. 

This implies that a major portion of the rainfall received in Amala leaves the 
catchment quickly as direct runoff, while the rainfall falling in Nyangores is 
stored and later on released as base flow. The difference in sensitivity of the pa-
rameters reflects on the different hydrological processes between the two 
sub-catchments suggesting different dominant run-off generation processes. 

The validation period for the two sub-catchments was done for the period 
between 1st January, 2009 to 30th November, 2013 and the results indicated better 
efficiencies as compared to the calibration as shown by the hydrographs in Fig-
ure 5 and Table 2. 

 

 
(a) 

 
(b) 

Figure 5. (a) and (b). Simulated and Observed discharge in mm/day for Nyangores and Amala Sub-catchments 
above and below respectively for the validation. (a). Nyangores Sub-catchment; (b). Amala Sub-catchment. 

https://doi.org/10.4236/ijg.2017.89064


A. M. Birundu, B. M. Mutua 
 

 

DOI: 10.4236/ijg.2017.89064 1127 International Journal of Geosciences 
 

From Table 2, the results show that the Reff values for Nyangores and Amala 
sub-catchments were Reff > 0.68 and Reff > 0.62 respectively. These efficiencies 
were generally good, even though the model overestimated the observed dis-
charge by about 131 mm/a (70%) in the Amala sub-catchment. Low flow simu-
lations were acceptable with Nyangores and Amala having log Reff > 0.64 and log 
Reff > 0.59 respectively. The model showed better performance during the valida-
tion period as compared to the calibration period posting higher coefficient of 
determination R2 > 0.75 and R2 > 0.69 for Nyangores and Amala respectively. 
The reason as to why the model simulations during this period were better than 
the calibration period could be attributed to better data quality (fewer missing 
data) for the later years. In addition, results indicate that the HBV Light model 
has the ability to reproduce good rainfall-run-off relation during mean and low 
flow periods. 

3.1. Assessment of Model Performance 

In order to obtain a process-based representation of the hydrological character-
istics in the two sub-catchments, manual adjustments of the model parameters 
were done following Monte Carlo simulations (MCS). An automatic calibration 
of the model was avoided because of the limitations of data quality and quantity. 
The MCS was carried out to identify the sensitivity of the catchments’ runoff 
generation characteristics, and to explore ranges of model parameters. Sensitiv-
ity analyses of model parameters was conducted through: (i) Assessing model 
results for different model structures (two catchment representations), and; (ii) 
Analysing the results of the MCS runs (over a 100,000 model runs for each 
catchment representations). The ranges for model parameters for the MCS 
analysis were kept wide as shown in Table 2 above; however, a search for suit-
able parameter sets with no plausible parameter values was avoided. In this re-
gard, the experiences of related studies with the same model were used to define 
the ranges for each parameter ([13]). Daily models were used for all the sensitiv-
ity analyses. Assessment of the model performance was done both visually and 
statistically using the objective functions according to [14] and also [15] for both 
normal and logarithmic values (Reff and log Reff). 

3.2. Water Balance Analysis 

A summary of the simulated and observed discharges at the outlet of the sub- 
catchment shows that the water balance closure was achieved at 127 mm and 119 
mm per year for the Qsimulated and Qobserved for the Nyangores Sub-catchment re-
spectively. A simple water balance closure using the water balance equation 
shows 457 mm of precipitation could not be accounted for. The Qsimulated and 
Qobserved for the Amala Sub-catchment were found to be 318 mm and 188 mm per 
year respectively. However the 279 mm of precipitation could not be accounted 
for but the results can be attributed to the interpolation method used either for 
the rainfall quantification or abstraction of the rivers’ water. 
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3.3. Sensitivity Analysis 

The sensitivity analysis was done to calibration parameters of HBV Light model 
to determine the parameters that influence the model performance more than 
the others. The sensitivity analyses were carried out for the soil moisture routine, 
response and routing routines. The results are shown in Figure 6. The analysis 
was done by reducing and increasing the final calibration values by 10% and the 
results plotted in a graph. 

From the sensitivity analysis, the results show that the coefficient of storage K0 
was the most sensitive of all the calibration parameters. The results show that a 
slight change of this value gives a great variation in the model performance. The 
LP, BETA and FC are also sensitive in that order. Other parameters such as UZL, 
K1 and K2 show very low sensitivity to the model performance. 

3.4. Effect of Varying Time Steps 

When the computational time step was increased from daily to 15 days and 30 
days’ time step by using aggregated 15 and 30 days data sets respectively, the new 
calibration results gave better model performance for the two sub-catchments as 
compared to daily simulations. This was expected as large daily fluctuations 
during the wet season were smoothened out. The results show that the simulated 
average peak discharge was higher than the observed values, except during the 
periods 1999/2001 and 2004/2005 for Nyangores and 2003/2004 and 2006/2007 
for Amala. The model efficiencies for the 15 days were, Reff > 0.79 and Reff > 0.68 
for Nyangores and Amala respectively. Also the mean annual (∆Q) differences 
were negligible in both sub-catchments. Interestingly, low flows were better 
simulated by the model in the Amala sub-catchment as compared to Nyangores. 
 

 
Figure 6. HBV model sensitive parameters analysis. 
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The log Reff was >0.71 and >0.62 during the calibration and validation period 
respectively. 

3.5. Partitioning of the Flow Hydrograph 

The model was able to partition the total hydrograph into three components; the 
mean annual direct runoff (QDR), the interflow (QIF) and the base flow (QBF) as 
summarised in Table 3. 

Generally, the base flow is noticeably dominant in the Nyangores sub-catchment 
at 85% as compared to that of Amala sub-catchment at 20%. The direct runoff is 
however dominant in Amala at 80% as compared to Nyangores at 15%. The 
large difference in the runoff components between the two sub-catchments, 
demonstrates a distinct difference in the fast response characteristics between 
the two. These findings are supported by previous studies done by [16]. These 
researchers found out that Nyangores had higher infiltration than Amala. In this 
research, the ground water run-off was assumed to be the base flow. The results 
clearly demonstrate that the dry season runoff of the Mara River is largely sus-
tained by ground water storage from the two sub-catchments. 

3.6. Model Performance Efficiency 

The model performance efficiency was carried out using the established statisti-
cal criteria such as NSE and R2. In addition to these indices, visual evaluation of 
the hydrographs was carried out in evaluating the simulation of peaks, low flows, 
recessions and timings. However, for model comparison of these efficiencies it is 
challenging to do so if the modelling time periods are different. However, for 
purposes of how efficient the model was in simulating the observed flow, the in-
dices were found to be sufficient in determining the HBV model performance as 
given in Figure 7. 

Figure 7 shows that the HBV Light model performed better in comparison to 
either SWAT or STREAM Model in simulating the hydrograph of the Nyangores 
and Amala Rivers. However, the STREAM model had a higher R2 efficiency both 
at the calibration and validation as compared to HBV. 

4. Conclusions 

The Mara River Basin is facing unprecedented threat as a result of deforestation, 
 
Table 3. Statistics of direct runoff QDR and base flow QBF components from 1997 to 2008. 

 
Run-off component 

Catchment representation QDR QBF 

Nyangores Mean Q (mm/a) 18 101 

 
% to total 15% 85% 

Amala Mean Q (mm/a) 151 37 

 
% to total 80% 20% 
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Figure 7. Comparison of SWAT, STREAM and HBV light models performance efficiencies. 

 
expansion of agriculture, human settlement, sedimentation and erosion, flood-
ing and low flows. Therefore, understanding the relation between the natural 
processes and anthropogenic activities that occur in the basin requires a reliable 
representation of the relevant hydrologic activities. The research assessed the 
ability of the HBV Light Model in simulating the long-term rainfall-runoff of the 
basin. The overall objective of the study was to apply a conceptual model simu-
lating Mara river runoff as a function of the satellite observed and in-situ rainfall 
data. Based on the research questions the study was answering in its bid to 
achieve this objective, the following conclusions can be made: 

a) There is a linear relationship between the in-situ rainfall and measured ru-
noff, and the runoff simulation model was developed on the basis of this rela-
tionship. 

b) The model was found to be sensitive mostly on the response routine para-
meter, K0 which was responsible to the direct run-off (coefficient of storage in 
the upper zone), followed by soil moisture routine parameter BETA (β) and LP. 
It can be concluded that the K0 parameter is affected by catchment parameters 
such land cover/land use (forests), infiltration or ground water storage capacity 
which in turn affects the evapotranspiration. Nyangores has the highest evapo-
transpiration and has the lowest K0 while Amala is assumed to have the least 
evapotranspiration has the highest K0. 

c) Although the model tried to simulate the recession flow hydrographs giving 
the representation of catchment characteristics, it was not able to simulate well 
the peak flows in the catchment. The model over estimated the flow peaks which 
could be attributed to use of interpolated rainfall and discharge data where the 
data were missing. 

d) The model’s performance in terms of NSE and R2 were better as compared 
to previous rainfall-runoff modelling done using SWAT and STREAM model. 
The values for NSE were 0.65 and 0.59 for the calibration period and 0.69 and 
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0.62 for the validation of Nyangores and Amala respectively. 
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