

(Knowledge for Development)

# KIBABII UNIVERSITY

**UNIVERSITY EXAMINATIONS** 

**2022/2023 ACADEMIC YEAR** 

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

**MATHEMATICS** 

**COURSE CODE:** 

**MAA 223** 

COURSE TITLE:

**CLASSICAL MECHANICS** 

DATE:

12/04/23

TIME: 2:00 PM - 4:00 PM

# **INSTRUCTIONS TO CANDIDATES**

Answer Question ONE and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

## **QUESTION ONE (30 MARKS)**

- a) State three important properties of a central force field (3 marks)
- b) An artificial satellite is rotating about the earth at a height h of 200km above the surface of the earth where acceleration due to the gravity  $g = 9.8ms^{-2}$ . The radius of the earth r is 6400km. Calculate the speed of the satellite. (6 marks)
- c) A trolley M of mass 80g travelling at  $3ms^{-1}$  collides with another trolley N of twice its mass moving in the opposite direction with a velocity of  $0.5ms^{-1}$ . If the trolleys stuck together on collision, calculate the common velocity with which they move. (7 marks)
- d) Due to a force field a mass of *Sunits* moves along a space curve whose position vector is  $r = (2t^3 + t)i + (3t^4 t^2 + 8)j 12t^2k$ . Find
  - (i) Velocity (3 marks)
  - (ii) Momentum (3 marks)
- e) A constant force  $\vec{F}$  acting on a particle of mass m changes the velocity from  $v_1$  to  $v_2$  in time  $\tau$ . Prove that  $\vec{F} = \frac{m(v_2 v_1)}{\tau}$  (8 marks)

### **QUESTION TWO (20 MARKS)**

- a) Consider two blocks A and B of mass  $m_A$  and  $m_B$  connected by a light spring on a frictionless surface. If the masses are pulled apart so that the spring is stretched after which they are released, show that the velocity of A is given by  $\overrightarrow{V}_A = -\overrightarrow{V}_B \left( \frac{m_B}{m_A} \right)$  (8 marks)
- b) Given that the acceleration due to gravity on the surface of the moon is  $1.7ms^{-2}$  and the radius of the moon is  $1.70 \times 10^6 \, m$ . Calculate the mass of the moon. (6 marks)
- c) Find the constant force needed to accelerate a mass of 10kg moving along a straight line from a speed of 54km/h to a speed of 108km/h in 5 seconds. (6 marks)

## **QUESTION THREE (20 MARKS)**

A particle of mass m moves in the xy - plane so that its position vector is given by  $r = a \cos \omega t \ i + b \sin \omega t \ j$  where a, b and  $\omega$  are positive constants and a > b

- a) Show that the:
  - (i) particle moves in an ellipse (6 marks)
  - (ii) force acting on the particle is always directed towards the origin (5 marks)
- b) Find the kinetic energy of the particle at points P and Q (6 marks)
- c) Find the work done by the force field in moving the particle from P to Q (3 marks)

#### **QUESTION FOUR (20 MARKS)**

a) Find the work done in moving a particle along a straight line from (-4,3,2) to (2,-1,3) in a force field given by  $\vec{F} = 3i - 2j + k$  (4 marks)

- b) An electric motor rated 3kW is used to lift bales of hay to a store in a dairy farm. A single bale has a mass of 5kg. If the store is 5m above the ground, how many bales can the motor raise in 3 minutes? (5 marks)
- c) Given that the mass of the earth is  $6 \times 10^{24} \, kg$  and the gravitational constant is  $6.7 \times 10^{-11} \, m^3 \, kg^{-1} \, s^{-2}$ . The radius of the earth is  $6.4 \times 10^6 \, m$ . Calculate the gravitational force on a mass of  $5 \, kg$  on the earth's surface. (5 marks)
- d) The moon revolves about the earth in  $30 \, days$ . Assuming that the orbit is circular and has a radius of  $4.0 \times 10^5 \, km$ , calculate the acceleration of the moon towards the earth. (6 marks)

# **QUESTION FIVE (20 MARKS)**

a) A particle of mass 2 units moves in a force field  $\vec{F}$  depending on time t given by  $\vec{F} = 24t^2 i + (36t - 16)j - 12t k$ . Assuming that at t = 0, the particle is located at

 $\overrightarrow{R}_0 = 3i - j + 4k$  and has a velocity  $\overrightarrow{V}_0 = 6i + 16j - 8k$ , find

(i) Velocity at any time t (5 marks)

(ii) Position at any time t (4 marks)

b) As an example of recoil, consider a radioactive decay in which an alpha particle, the nucleus of Helium atom of mass number 4 and atomic number 2, is emitted from a Uranium-238 nucleus originally at rest with a speed of  $1.4 \times 10^7 \, m/s$  and kinetic energy of 4.1 MeV. Find

(i) the velocity of the residual Thorium-234 nucleus. (6 marks)

(ii) the kinetic energy of Thorium (5 marks)

END