

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2022/2023 ACADEMIC YEAR
FORTH YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

STA 411

COURSE TITLE:

TIME SERIES ANALYSIS

DATE:

20/04/2023

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks)

a) Explain the following terms as used in time series analysis:

:1	Stationary process	(1mk)
1)	Stationary process	

- b) Find the autocovariance function $(\sigma(h))$ and the autocorrelation function $(\rho(h))$ of a (8mks) moving average process of order q (MA(q)).
- c) Consider autoregressive process of order 1 (AR(1)) given by $X_t = \alpha X_{t-1} + e_t$, where \propto is a constant.
 - If $|\alpha| < 1$, show that X_t may be expressed as infinite order of a MA process. (4mks)
 - Find its autocovariance function $(\sigma(h))$ and its autocorrelation function ii) (3mks) $(\rho(h)).$
- d) Transform a time series $\{X_t\}$ into another series $\{Y_t\}$ where $Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}$ and $X_t = e^{i\lambda t}$ and state the changes in its amplitude, wavelength and phase angle.(5mks)
- e) Find the spectral density function of an AR(1) process given by (5mks) $X_t = \alpha X_{t-1} + e_t$, where $|\alpha| < 1$

QUESTION 2: (20 Marks)

- a) Suppose we have data up to time $n(x_1, x_2, ..., x_n)$
 - i) Show that minimum mean squared error forecast of x_{n+k} is the conditional mean at time n. of x_{n+k} (6mks) i.e. $\widehat{x}(n,k) = E(x_{n+k}/x_1, x_2, ..., x_n)$
 - ii) Consider the AR(1) model $X_t = \alpha X_{t-1} + e_t$, $|\alpha| < 1$. (2mks) Forecast x_{n+3} .
- b) Transform a moving average filter $\{X_t\}$ into another series $\{Y_t\}$ by the linear operator

$$X_t = e^{i\lambda t}$$
 and $Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}$

Where

$$a_{j} = \begin{cases} \frac{1}{2m+1}, & j = 0, \ \overline{+}1, \overline{+}2, \dots, \ \overline{+}m \\ 0, & otherwise \end{cases}$$
 (12mks)

QUESTION 3: (20 Marks)

a) Consider an AR(1) process with mean μ given by $X_t - \mu = \alpha(X_{t-1} - \mu) + e_t, t = 1, 2, 3, \dots$

Find the estimates of the parameters \propto and μ using the method of least squares.

(8mks)

b) Consider a second order process AR(2) given by $X_t = \frac{1}{3}X_{t-1} + \frac{2}{9}X_{t-2} + e_t.$ Show that this process is stationary and hence obtain its ACF

(12mks)

QUESTION 4: (20 Marks)

a) i) Briefly describe the main objectives in the analysis of a time series.

(3mks)

- ii) State the unique feature that distinguishes time series from other branches of statistics. (1mk)
- iii) Identify the main stages in setting up a Box-Jenkins forecasting model.

(4mks)

b) Show that the AR(2) process given by $X_t = X_{t-1} - \frac{1}{2}X_{t-2} + e_t$ is stationary and hence find its ACF. (12mks)

QUESTION 5: (20 Marks)

- a) If an observed values $(X_1, X_2, ..., X_n)$ on a discrete time series forms n-1 pairs of observation $(X_1, X_2), (X_2, X_3), ..., (X_{n-1}, X_n)$ regarding the first observation in each pair as one variable and second observation as a second variable
 - i) The correlation coefficient r_1 between X_t and X_{t-1}

(5mks)

ii) The correlation between observations at a distance k apart.

(2mks)

The data below gives the average quarterly prices of a commodity for four (4) years.

Year	I	II	III	IV
1997	50.4	40.8	47.5	49.8
1998	38.3	33.6	53.2	69.5
1999	67.2	53.2	60.7	42.6
2000	55.1	56.4	61.6	65.1

Calculate the seasonal indices.

(6mks)

c) Consider a moving average process given by $X_t = e_t + \beta e_{t-1}$, where $(\beta_0 = 1, \beta_1 = 1)$. Find its spectral density function.

(7mks)