

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAM

FOR THE DEGREE OF BACHELOR OF SCIENCEN IN CHEMISTRY

COURSE CODE: SCH 414

COURSE TITLE: STATISTICAL THERMODYNAMICS

DATE: 20/04/2023 TIME: 9:00-11:00AM

OUESTION ONE (30MARKS)

1. a) Define the following terms as used in statistical thermodynamics.

(5 marks)

- i. An ensemble
- ii. A particle
- iii. Probability theory
- iv. Statistical thermodynamics
- v. Phase space
- b). Differentiate between macrostate and microstate

(4marks)

c). State four types of heat capacity as used in statistical thermodynamics

(4 marks)

d) Explain the significance of molecular partition function

(2marks)

- e). State the concepts in which statistical thermodynamics provides a deeper understanding (4marks)
- f). Calculate the number of ways of distributing 21 identical objects with the arrangement (4 marks)
- h). Calculate the translational partition function of an H_2 molecule confined to a $100 \text{ cm}^3 \text{ vessel}$ at 25°C we use m = 2.016 u; then (4marks)
- h). State three significance of partition function

(3 marks)

QUESTION TWO (20MARKS)

- 2.a) Explain the differences among the three types of distribution or statistics as used in statistical thermodynamics. (10marks)
- b). State and explain the three types of ensembles as used in statistical thermodynamics (10 marks)

QUESTION THREE (20MARKS)

- 3 a). You have six distinguishable particles and two energy levels one with a degeneracy of two and the other with degeneracy of five. Calculate the number of microstates in this system (10 marks)
- b) For an ensemble consisting of 1.00 moles of particles having two energy levels separated by $hv = 1.00 * 10^{-20} J$, at what temperature will the internal energy of this system equal 1.00 kJ? (10marks)

QUESTION FOUR (20MARKS)

- 4. a) Derive all the four Maxwell Thermodynamical relations using the differential form of the equations of U, H, A and G (10 marks)
- b). Calculate the molar Gibbs energy of Ar at 298.18 K and 10⁵ pa, assuming that the gas demonstrates ideal behavior (10marks)

QUESTION FIVE (20MARKS)

5. a). What is Thermodynamic reversibility

(5marks)

b). Give five application of statistical thermodynamics

(5 marks)

- b). Derive relationships between the following partition function and thermodynamic functions. (10 marks)
 - i. Partition function and heat capacity at constant volume
 - ii. Partition function and heat capacity at constant pressure
 - iii. Partition function and internal energy