



(Knowledge for Development)

## KIBABII UNIVERSITY

**UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR** FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

**BACHELOR OF SCIENCE** 

COURSE CODE:

MAP 424/MAA 424.

COURSE TITLE: DIFFERENTIAL GEOMETRY

DATE: 07/09/2022

TIME: 9:00 AM - 11:00 AM

## **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

## **QUESTION ONE (30 MARKS)**

a). Define the following terms

i). Smooth vector function (2 mks)

ii). A surface (1 mk)

iii). Cross product (1 mk)

iv). Spherical indicatrices (1 mk)

v). Bertrand Curves (1 mk)

b). Find the unit normal vector to the surface  $X(u, \theta) = \langle u \cos \theta, u \sin \theta, 2\theta \rangle$  (6 mks)

c). Determine the first and the second curvature of the curve  $r(t) = (2t, 4 \sin t, 4 \cos t)(10 \text{ mks})$ 

d). Given the equation of the surface  $X(u, v) = \langle 6u, 6u, u - v \rangle$  find its first fundamental form. (4 mks)

e). Show that the angle between the two parametric curves of a surface X = X(u, v) is given by

 $\theta = \cos^{-1}\left(\frac{F}{\sqrt{EG}}\right) \tag{4 mks}$ 

## **QUESTION TWO (20 MARKS)**

a). Find the area of a parallelogram whose vertices are (-4,3), (-1,7), (3,3), (6,7). (3 mks)

b). Determine the unit tangent vector to  $\mathbf{r}(t) = \langle t, e^t, -3t^2 \rangle$  at t = 0. (4 mks)

c). Find the unit binomial vector to the curve  $X(t) = \langle 2t + 2t^3, 3t + \frac{t^2}{2}, 4t^2 \rangle$  at t = 1. (7 mks)

d). Let X = X(u, v) be surface with directions given in parametric form as (du: dv) and  $(\delta u, \delta v)$  whose tangential vectors are  $dX = X_u du + X_v dv$  and  $\delta X = X_u \delta u + X_v \delta v$  respectively. Prove that the angle between the two directions is given by

$$\theta = \cos^{-1}\left(\frac{I(d,\delta)}{\sqrt{I(d)}\sqrt{I(\delta)}}\right)$$

Where  $I(d, \delta)$  is the first fundamental form of a surface.

(6 mks)

# **QUESTION THREE (20 MARKS)**

a). Determine the arc length of the curve  $X(t) = \langle 2t, 3\cos 2t, 3\sin 2t \rangle$  for  $0 \le t \le \sqrt{10}$  (5 mks)

b). Find the equation of the rectifying plane of  $X(t) = \langle t^2, 1+4t, t^2 \rangle$  at t=1. (5 mks)

c). State and prove the Frenet – Serret formulas to the curve X = X(s). (10 mks)

### **QUESTION FOUR (20 MARKS)**

- a). Let  $\gamma$  be a curve lying on the surface X = X(u, v) where  $u = u(t), v = v(t), a \le t \le b$ . Prove that the length of the arc on the curve is given by  $\int_a^b \sqrt{I} \ dt$  where I is the first fundamental form of a surface. (6 mks)
- b). Find the equation of the parametric equation normal line and standard equation of the rectifying plane to the curve  $X(t) = \langle t 1, -t^2, t^3 + 1 \rangle$  at t = 1. (7 mks)
- c). State and derive the second fundamental form of a surface X = X(u, v) of class  $C \ge 2$ .

### **QUESTION FIVE (20marks)**

- a). Determine the lines of curvature to the helicoid  $r(s,t) = \langle s \cos t, s \sin t, bt \rangle$ . (11 mks)
- b). Find the parametric equation of the tangent line to  $X(t) = \langle t, \frac{1}{2}t^2, 8t \rangle$  at t = 1. (3 mks)
- c). Consider a parametrized surface  $X(u,v) = \langle \cos u \sin v, \sin u \sin v, \cos v \rangle$  for  $(u,v) \in [0,2\pi) \times [0,\pi]$ . Determine the length of the curve  $\left(u(t),v(t)\right) = \left(t,\frac{\pi}{2}\right)$  for  $0 \le t \le 2\pi$  lying on the surface X(u,v).