

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (PHYSICS)

COURSE CODE:

SPC 321

COURSE TITLE:

QUANTUM MECHANICS I

DATE: 21/11/2022

TIME: 11:00AM-1:00PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 MARKS]

- a) If $\widehat{A} = 3x^2$ and $\widehat{B} = \frac{d}{dx}$. Show that \widehat{A} and \widehat{B} do not commute. [4 marks]
- b) Show that the function $\psi(x) = cxexp\left(-\frac{1}{2}x^2\right)$ is an eigen function of the [5 marks] operator $\left(x^2 \frac{d^2}{dx^2}\right)$ and hence the corresponding eigen value.
- c) Find the probability that a particle trapped in a box L wide can be found between [4 marks] o.45L and 0.55L for ground state.
- d) A particle has a 1-dimensional wave function given by:- [4 marks] $\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}.$ Find the expectation value of x in the interval [0, L].
- e) The Hamiltonian of a simple harmonic oscillator is given by $\widehat{H} = \frac{\widehat{P}^2}{2m} + \frac{1}{2}m\omega\widehat{x}^2$ [4 marks] prove that: $[\widehat{p}_x, \widehat{H}] = -i\hbar m\omega^2 x$.
- f) Write down the two Heisenberg uncertainty relations involving energy and momentum. Hence estimate the kinetic energy in MeV of a neutron confined to a nucleus of diameter $10 \, fm$.
- Show that the wave functions $\psi_n(x) = \sqrt{\frac{2}{L}} sin \frac{n\pi x}{L}$ and $\psi_m(x) = \sqrt{\frac{2}{L}} sin \frac{m\pi x}{L}$ are orthogonal. [4 marks]

QUESTION TWO [20 MARKS]

- a) What boundary conditions do wave functions obey? [2 marks]
- (b) A particle confined to a one dimensional potential well has a wave function given by:-

$$\psi(x) = \begin{cases} 0 & for \ x < -L/2 \\ Acos\left(\frac{3\pi x}{L}\right) for \ -L/2 \le x \le L/2 \\ 0 & for \ x > -L/2 \end{cases}$$

- (i) Sketch the wave function $\psi(x) \approx \cos\left(\frac{3\pi x}{L}\right)$ [3 marks]
- (ii) Calculate the normalization constant A [5 marks]
- (iii) Calculate the probability of finding the particle in the interval $-L/4 \le x \le L/4$ [5 marks]

(iv) Using the Schrödinger equation $\left(-\frac{\hbar^2}{2m}\right)\left(\frac{d^2\psi}{dx^2}\right) = E\psi$ show that the energy E corresponding to this wave function is given by: $-\frac{9\pi^2\hbar^2}{2mL^2}$.

QUESTION THREE [20 MARKS]

- Show that the momentum operator $-i\hbar \frac{\partial}{\partial x}$ is a Hermitian operator. Hence obtain [5 marks] Eigen function and Eigen values of \hat{p}_x .
- b) A particle moving in one dimension is in a stationary state whose wave function [15 marks] is given by: $\begin{cases}
 0 & for x > -a
 \end{cases}$

$$\psi(x) = \begin{cases} 0 & for \ x > -a \\ A\left(1 + \cos\frac{\pi x}{a}\right) for -a \le x \le a \\ 0 & for \ x > a \end{cases}$$

Find the magnitude of A so that $\psi(x)$ is normalized, Evaluate Δx and Δp hence verify that $\Delta x \Delta p \geq \frac{\hbar}{2}$.

QUESTION FOUR [20 MARKS]

- a) The one- dimensional time-independent Schrödinger equation is given by $\left(-\frac{\hbar^2}{2m}\right)\left(\frac{d^2\psi(x)}{dx^2}\right) + U(x)\psi(x) = E\psi(x)$ give the meaning of the symbols in this equation.
- b) A particle of mass m is contained in a one-dimensional box of width a. the potential energy is infinite at the walls of the box x = 0 and x = a and zero in between 0 < x < a. Solve the Schrödinger equation for this particle and hence show that the normalized solutions have the forms $\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{a}$ and $E_n = \frac{h^2 n^2}{2n-x^2}$.
- c) For n = 3, find the probability that the particle will be located in the region [4 marks] a/3 < x < 2a/3.

QUESTION FIVE [20 MARKS]

- a) Find the expectation values of kinetic energy, potential energy and total energy of hydrogen atom in ground state for $\psi_0 = \frac{e^{-r/a_0}}{\sqrt{\pi a_0^3}}$ where a_0 is the Bohr's radius. [8 marks]
- b) Using $\frac{\partial \psi}{\partial t} = -\frac{\hbar}{2mi} \nabla^2 \psi + \frac{V}{i\hbar} \psi$ and $\frac{\partial \psi^*}{\partial t} = \frac{\hbar}{2mi} \nabla^2 \psi^* + \frac{V}{i\hbar} \psi^*$ show that $J_x = V_x |A|^2$. [12 marks]