

(Knowledge for Development)

KIBABII UNIVERSITY

FOR THE DEGREES OF BACHELOR OF SCIENCE

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SUPPLEMENTAY/SPECIAL MAIN EXAMINATION

COURSE CODE: STA 422

COURSE TITLE: SEQUENTIAL ANALYSIS

DATE: 25/11/22 **TIME**: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question One (30 Marks)

a) Define the term Sequential Analysis.

(2 Marks)

b) Briefly elaborate 2 applications of sequential analysis

(4 Marks)

c) List the 3 key decision rules that are in sequential testing

- (3 Marks)
- d) Let B_n denote the subset of n-dimensional space in which $A < \ell_k$ ($\mathcal{E}_1, ..., \mathcal{E}_k$) < B for k =1,2,..., n-1 and ℓ_k (\mathcal{E}_1 , ..., \mathcal{E}_n) \geq B so that $\{N=n,\ \ell_n\geq B\}=\{(x_1,...x_n)\in B_n\}$. Show (6 Marks) that $\alpha \approx \frac{1-A}{B-A}$ and $\beta \approx \frac{A(B-1)}{B-A}$
- e) Let $x_1, ... x_n$ be independent and identically distributed random variables with finite mean μ . Let M be any integer-valued random variable such that $\{M=n\}$ is an event determined only by $x_1, ... x_n$ for all n=1,2,...., and assume that E(M) < ∞ through monotone (6 Marks) convergence theorem prove the Wald's equation
- f) Let θ be the probability of an item being defective. At the nth stage, take one more observation if $B < \frac{\theta_1^r(1-\theta_1)^{n-r}}{\theta_0^r(1-\theta_0)^{n-r}} < A$. If $\theta_0 = 0.5$ and $\theta_1 = 0.8$, solve for A and B and hence (5 Marks) determine the continue-sampling region.
- g) If the probability that an individual will suffer a bad reaction from injection of a given serum is 0.001, determine the probability that out of 2000 individuals,
 - exactly 3, (i)

(2 Marks)

(ii) more than 2, individuals will suffer a bad reaction. Assume X is Poisson distributed (2 Marks)

Question Two (20 Marks)

- a) Consider the Problem of testing $\theta = \theta_0$ versus $\theta = \theta_1 > \theta_0$ in a Bernoulli population.
 - Derive the equation for θ i.

(5 Marks)

If $\theta_1 = 0.8$, $\theta_0 = 0.5$ and $\alpha = \beta = 0.01$ ii.

values of compute the

 θ and Operating Characteristic function in the table below.

(5 Marks)

h	-∞	-1	0	1	00
θ					
OC				me inequality of	

b) By Wald's likelihood ratio theorem derive the stopping time inequality of any sequential (10 Marks) hypothesis.

Question Three (20 Marks)

- a) The sample size needed to reach a decision in a sequential or a multiple sampling plan is a random variable N. Assuming P(Z = 0) < 1 show that the moment-generating function of N is finite and hence derive the expectation equation of this distribution. (10 Marks)
- b) Using Wolfowitz method show that $E(\ln(\Lambda_N) = E(N)E(Z)$ (10 Marks)

Question Four (20 Marks)

a) The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a pdf

$$f(x) = \begin{cases} \frac{1}{30} e^{-\frac{x}{30}}, & for \ x > 0\\ 0, & otherwise \end{cases}$$

Find the expected number of miles (in thousands) a tyre would last until it reaches the critical tread wear point. (10 Marks)

b) Prove the (weak) law of large numbers for Bernoulli trials by Chebyshev's inequality (10 Marks)

Question Five (20 Marks)

a) A function h(q) is estimable unbiasedly if and only if it can be expanded in Taylor's series in the interval |q| < 1. Prove that if h(q) is estimable, then its unique unbiased estimator is given by

$$g(\gamma_k) = \frac{(c-1)!}{(k+c-1)!} \frac{d^k}{dq^k} \left[\frac{h(q)}{(1-q)^c} \right]_{q=0}, k = 0,1,2,...$$
(10 Marks)

b) Let $\theta = (\sigma^*/\sigma)^2$. Then as n gets large, in probability

$$\frac{M\theta}{n_1} \to \begin{cases} 1 & \text{when } H_0 \text{ is true} \\ 1 + \frac{\delta^{*2}}{4\sigma^2} & \text{when } \mu_2 - \mu_1 = \delta^* \end{cases}$$

Show that $\sigma^* = T_1 + T_2 = \alpha$ for all values of θ (10 Marks)