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 THE RANGE OF A VECTOR-VALUED MEASURE

 J. J. UHL, JR.

 Liapounoff, in 1940, proved that the range of a countably additive
 bounded measure with values in a finite dimensional vector space is
 compact and, in the nonatomic case, is convex. Later, in 1945,
 Liapounoff showed, by counterexample, that neither the convexity
 nor compactness need hold in the infinite dimensional case. The next
 step was taken by Halmos who in 1948 gave simplified proofs of
 Liapounoff's results for the finite dimensional case. In 1951, Blackwell
 [I] considered the case of a measure represented by a finite dimen-
 sional vector integral and obtained results similar to those of Lia-
 pounoff for these measures. Various versions of Liapounoff's theorem

 appeared in the 1950's and 1960's, and in 1966, Lindenstrauss [8]
 gave a very elegant short proof of Liapounoff's earlier result. Finally,
 in 1968, Olech [9] considered the case of an unbounded measure with
 range in a finite dimensional vector space. The purpose of this note
 is to demonstrate that the closure of the range of a measure of
 bounded variation with values in a Banach space, which is either a
 reflexive space or a separable dual space, is compact and, in the non-
 atomic case, is convex.

 To this end, let Q be a point set and z be a a-field of subsets of U.
 If X is a Banach space, then an p-valued measure is a countably addi-
 tive function F defined on 2 with values in X. F is of bounded varia-
 tion if

 var(F)(Q) =sup E ll F(En)|| < a
 W n

 where the supremum is taken over all partitions r = { En }=C2
 consisting of a finite collection of disjoint sets in z whose union is U.
 A set EE2 is an atom of F if F(E) $0 and E'C2, E'CE imply
 F(E') = 0 or F(E') = F(E). F is nonatomic if F has no atoms.

 The following theorem is the main result of this note.

 THEOREM 1. Let X be a Banach space which is either a reflexive space
 or a separable dual space. If F: 2;- X is a measure of bounded variation,
 then the range of F is a precompact set in the norm topology of t. More-
 over, if F is nonatomic, then the closure of the range of F is compact and
 convex.

 Received by the editors January 9, 1969.
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 THE RANGE OF A VECTOR-VALUED MEASURE 159

 PROOF. Let F and X be as in the hypothesis, and for E G, let Ai(E)
 be the variation of F restricted to E. (I.e., p(E) 5S is the variation
 of the set function F.E(.) = F(En *) on 2.) Then according to
 Dinculeanu [2, p. 41], ,u is a countably additive nonnegative finite
 measure on 2. Clearly F is absolutely continuous with respect to A.
 Hence, in the case X is reflexive or in the case X is a separable dual
 space, Phillips' generalization of the Radon-NikodQm theorem [10,
 p. 30] or the Dunford and Pettis theorem [4, Theorem 2.1.4], re-
 spectively, guarantee the existence of a n-measurable n-valued func-

 tion f LI(M, X) (i.e., fa| |ffIdp < oo) such that F(E) =fE fdc for all
 E G.

 Next, select a sequence of simple functions {fn } in Ll(,u, X) con-
 verging to f in L1(,u, X) norm and define T and T, n = 1, 2, * * * , for
 gCL(,u C) (C=scalar field of X) by T(g)-=f gfdp and Tn(g)
 =fa gf,dcy respectively. Then T and Tn are evidently linear and by
 the H6lder inequality,

 || f gfd,i| ? f I g II lflId| ? |lglIL||lflLl,

 are bounded. In addition the last computation shows that, in the

 uniform operator topology, limn |Tn-T| ?limiMn fJ lf-fn|fdu = 0.
 Now, note that the range of each Tn is finite dimensional since each
 fn is a simple function. Therefore each Tn is compact, and hence, by
 the above, T: L(,u, C)->* is a compact operator. Moreover, since
 { XE: E GE } is contained in the unit ball of LX (,u, C), it follows from
 the compactness of T that

 {F(E): E E II = {ffdi:EE2} = {T(XE), E E }

 is a norm precompact set in X. This proves the first assertion.
 To prove the second statement, assume that F is nonatomic.

 Clearly ,, as defined above, is also nonatomic. Now, if ir = {En } is a
 partition and f, is the simple function defined by

 (0/0) =0 and F7, is the indefinite integral of f, i.e., for E G,

 fdA
 F,(E) E En (E nr E))

 7 A (En)
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 then by [3, Theorem 111.2.15] and [3, Theorem IV.8.18],

 limvar(F - F,) = limf If -fJ7I1dy = 0,

 where the limit is taken in the Moore-Smith sense after the collection
 of all partitions is directed by the partial ordering of refinement.

 Next note that each of the i-valued measures F1, has its values in
 a finite dimensional subspace of X. Also, since , is nonatomic, it fol-
 lows easily that each F1, is nonatomic and hence by Liapounoff's
 theorem [5] has a convex range. Now let x, y belong to the closure
 of the range of F, a and 3 be nonnegative numbers with a+IB= 1, and
 e>0 be given. Select E1 and E2G2 such that ||x-F(E1)jj <e/2 and
 II Y- F(E2)fl <E/2. Then choose a partition irO subject to the conditions
 that

 O 0 {E1-E2, E2-El, E1 n E22 Q-(E1 U E2)

 and that var(F- F.,) <e/2. It is not difficult to see that

 F,O(Ei) = f fdA = F(E ), i = 1, 2,

 Moreover, since the range of FTO is convex, there exists a set EoG2
 such that F,r0(Eo) =aFT0(El) +fF7r(E2) =aF(El) +?fF(E2). Com-
 bining these relationships, one has

 ||ax +f3y - F(E0)I|

 = flax + fly - (aF(El)) + ,3(F(E2)) + Fro(Eo) - F(Eo)ll
 ?l fx - F(E1)j1 + Illy - F(E2)11 + F7r0(E0) - F(E0)11
 < aE/2 + o3E/2 + E/2 = -,

 since a+3=1 and jfF,O(Eo)-F(Eo)lJ ?var(FTO-F)<e/2. Thus the
 closure of the range F is convex. Q.E.D.

 The following corollary is clear.

 COROLLARY 2. Under the same hypothesis, if the range of F is closed,
 then it is norm compact. If F is nonatomic and its range is closed, then
 its range is compact and convex.

 Neither the theorem nor its corollary have immediate improve-
 ments. Below are two examples, the first indicates that if the hypoth-
 esis on X is weakened, the conclusion of Theorem 1 fails, and the
 second, which is due to Liapounoff, shows that a measure may satisfy
 the hypothesis of Theorem 1 and fail to have a compact or convex
 range.
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 First, let Q = [0, 1], z be the Borel a-field of subsets of z and X be
 Lebesgue measure on M. Define F: -L1(i, 2, ,) by F(E) = XE, where
 XE is the characteristic or indicator function of E 2. Clearly F is
 nonatomic, and since f| F(E)|I = IIXEII =X(E), F is evidently countably
 additive and of bounded variation. It will now be shown that the
 closure of the range of F is neither compact nor convex. To show the
 range of F is not precompact, consider the Borel sets

 2(m-1)

 Em U Emn, m = 1, 2,* *.
 n=1

 where Emn is the closed interval [2(n-1)/2m, (2n-1)/2m] for n

 = 1, 2, * * * , 2(m-1). A brief computation yields IIXEi-XEijI = 1/4 for
 i j. Thus {XEm } = { F(Em) } is a sequence in the range of F with no
 convergent subsequence; i.e., the range of F is not precompact.

 To show that the closure of the range of F is not convex, note that
 the function

 1/2Xu= 1/2XE1 + 1/2XE2

 where E1= [0, 1/2] and E2= [1/2, 1] is a convex combination of
 members of the range of F. But, if EC2 is arbitrary

 JIF(E) - 1/2xq11 = ?IXE - 1/2X,fl = 1/2X(Q - E) + 1/2X(E) = 1/2.

 Thus the closure of the range of F is not convex.
 REMARK. It is noted here that in view of Theorem 1, this example

 provides another proof of the fact that the separable space L'(Q, 2, ,1)
 is not a dual space. Also this example provides a simple set function
 F absolutely continuous with respect to X but which has no Radon-
 NikodSm derivative with respect to X. To see this, note that if F were
 an integral with respect to X then the proof of Theorem 1 would show
 that the range of F were compact.

 Finally the example constructed by Liapounoff in [6] will be given
 with a minor modification to show that even if a vector measure F
 satisfies the hypothesis of Theorem 1, then its range need not be
 compact or convex. It is given here for completeness and because of
 the one small modification. Let [0, 27r] =Q, be the Borel o-field of
 subsets of Q, and X be Lebesgue measure on 2. Let {i/'n } w % be a com-
 plete orthogonal set in L2(X, C) such that each iJi assumes only the
 values +1 and -1 and such that Io =+ 1 while fJ / 'ndX =0 for
 n>O.' Defining In on 2 by

 1 Any normalized Haar basis will suffice.
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 In(E) = 2-n ((1 + -An) )/2)dX, E E

 and F: E-*12 by

 F(E) = (lo(E), 11(E), . , In(E), ...

 one finds 11 F(E)1I 12 < 2 X (E) so shat F is of bounded variation. Clearly
 F is nonatomic; therefore since F has its values in the reflexive space
 12 Theorem 1 guarantees the closure of the range of F is compact and
 convex. Now consider F(Q) = (2r, w/2, /4, ** * , /2, * - * ) and
 suppose there exists an E (E such that F(E) = F(,Q)/2. Then r = 1o(E)

 =fE dX=X(E) and for n>O

 7/2nJl = In(E) = 2-n ((1 + 4In)/2)dX

 = X(E n U.)/2n

 where Un= {sGE [0, 2r]: =n(s)+1 }. It follows immediately from
 this and the facts that X (Un) = X (E) = X that X (EN Un) = X (E-Un)
 =X(Un-E) =X(-E- Un) =w/2 for all n>O. Now define w on Q by
 co(x)=+1 for xEE, w(x) -1 for xEJIE. Then f =owdX =r- =o,
 and for n>O

 r2er

 L>ncodX = X(Un n E) + X(- Un - E)

 - X(E- Un) - X(E - Un) = 0.

 This contradicts the fact that {i'n} was complete in L2(X, C) and
 shows two things: first, that even under the hypothesis of Theorem 1,
 such a measure F need not have a convex range and second, that in
 view of Corollary 2 that the range of such a measure need not be
 closed. Thus Theorem 1 cannot be improved under the current
 hypothesis.

 It would be interesting to remove the restrictions imposed by

 Theorem 1 on the range space T. If X is allowed to be a general
 Banach space and F is an c-valued measure of bounded variation,
 then one can assert that the range of F is precompact and that, in
 the nonatomic case the closure of the range of F is convex if, as the
 proof of Theorem 1 shows, F has the representation F(E) =fEfdAu,
 E C- for some measure A and some measurable f with f I lfl I dt < co.
 However, this restriction appears, to the author, to be too severe for
 a general result.
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