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Starting from the usual Cauchy problem, we give a pseudodifferential represen-
tation for the solution of the fractional Cauchy problem associated with a Feller
semigroup.
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1. INTRODUCTION

Fractional derivatives are used to model anomalous diffusion, which oc-
curs when the particles spread in a different manner than the prediction of
the classical diffusion equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t), u(x, 0) = f(x).

The solution u (x, t) depends on location x ∈ R and time t ≥ 0 and models
the dispersion. A known model for an anomalous diffusion (see [6]) is the
fractional diffusion equation, where the usual second derivative in space is
replaced by a fractional derivative of order α, 0 < α < 2,

∂

∂t
u(x, t) = D

∂α

∂xα
u(x, t), u(x, 0) = f(x).

We observe that ∂α

∂xα is a pseudodifferential operator. Thus, we can extend
this equation to

∂u

∂t
(x, t) = (Au(· , t))(x), u(x, 0) = u0(x),

where A is a pseudodifferential operator. A study of the solutions of a genera-
lized reaction-diffusion equation of the form

∂u

∂t
(x, t) = (Au (· , t)) (x) + f (x, u (x, t)) , u (x, 0) = u0 (x) ,
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where A is a pseudodifferential operator which generates a Feller semigroup,
was given in [9].

In this paper we consider the fractional Cauchy problem

∂β

∂tβ
u(x, t) = (Au(·, t))(x), u(x, 0) = f(x),

where ∂β

∂tβ
u (x, t) is the Caputo fractional derivative in time and A is a pseu-

dodifferential operator which generates a Feller semigroup. In [1] and [2] was
shown that the solution of fractional Cauchy problem, where 0 < β < 1, t ≥ 0
and A is the generator of bounded continuous semigroup {T (t)}t≥0 on the
Banach space X, can be expressed as an integral transform of the solution to
the initial Cauchy problem

∂

∂t
u(x, t) = (Au(·, t))(x), u(x, 0) = f(x).

Starting from this integral transform, we give a formula for the solution
u(x, t) = S(t)f(x) of the fractional Cauchy problem. We show that {S(t)}t≥0

is a family of pseudodifferential operators. Their symbols are obtained by
transformation of the symbols of the semigroup {T (t)}t≥0, where u(x, t) =
T (t)f(x) is the solution to the initial Cauchy problem.

2. INTEGRAL REPRESENTATION OF THE OPERATORS
WHICH FORM A FELLER SEMIGROUP

Let (X, ‖ · ‖) be a Banach space. {T (t)}t≥0 is a strongly continuous
semigroup on X if for any t ≥ 0, T (t) : X → X is a linear operator and there
exists M > 0 such that ‖T (t)x‖ ≤ M‖x‖, T (0) = I, T (t + s) = T (t)T (s) for
t, s ≥ 0, and t → T (t)x is continuous in the norm ‖ · ‖, for all x ∈ X. The
generator (A,D(A)) of the semigroup {T (t)}t≥0, is defined by

D(A) =
{

x ∈ X | lim
t→0+

T (t)x− x

t
exists

}
, Ax = lim

t→0+

T (t)x− x

t
,

where we suppose that the limit exists for at least some nonzero x ∈ X.
u (t) = T (t) f solves the abstract Cauchy problem

d
dt

u(t) = Au(t), u(0) = f,

for f ∈ D(A).
In the following, we denote by C∞(Rn) the Banach space of all continuous

functions on Rn vanishing at infinity with the supremum norm ‖ · ‖∞ and by
C∞

0 (Rn) the set of all C∞-functions on Rn with compact support. S(Rn)
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will be the Schwartz space, i.e., the set of all functions ϕ ∈ C∞(Rn) such that
sup

x∈Rn
|xβ∂αϕ(x)| < ∞ for all multi-indices α and β. S(Rn) is dense in C∞(Rn).

A function a : Rn → C is called negative definite if a(0) ≥ 0 and ξ →
e−ta(ξ) is a positive definite function for all t > 0. A continuous negative
definite function a is described by Lévy-Khinchin formula

a(ξ) = c + ib · ξ + q(ξ) +
∫
Rn\{0}

[
1− e−iξ·y − i

ξ · y
1 + |y|2

]
1 + |y|2

|y|2
dµ(y)

with c ≥ 0, b ∈ Rn, q a continuous non-negative definite quadratic form on
Rn and µ, called measure Lévy, a σ-finite Borel measure on Rn \{0} such that∫

Rn\{0}
min(1, |y|2)dµ(y) < ∞.

The general form of a pseudodifferential operator is

p(x, D)ϕ(x) = (2π)−(n/2)

∫
Rn

eix·ξp(x, ξ)ϕ̂(ξ)dξ,

for ϕ ∈ C∞
0 (Rn), where

ϕ̂(ξ) = (2π)−(n/2)

∫
Rn

e−ix·ξϕ(x)dx

is the Fourier transform. p(x, ξ) is called the symbol of the operator p(x, D)
(see, for example, [4]).

Let A : D(A) → C∞(Rn) be a linear operator, where D(A) is a linear
dense subspace of C∞(Rn). A satisfies the positive maximum principle on
D(A) if for all u ∈ D(A) and x0 ∈ Rn such that

sup
x∈Rn

u(x) = u(x0) ≥ 0

it follows that Au(x0) ≤ 0.

Theorem 2.1 ([3]). Let A : C∞
0 (Rn) → Cb(Rn) be a linear operator

satisfying the positive maximum principle. Then

Au(x) = −(2π)−(n/2)

∫
Rn

eix·ξa(x, ξ)û(ξ)dξ,

where a : Rn ×Rn → C is a locally bounded function such that for any fixed
x ∈ Rn, ξ → a(x, ξ) is a continuous negative definite function.

The convolution semigroup on C∞(Rn) generated by a is defined by the
formula

T (t)u(x) = (2π)−(n/2)

∫
Rn

eix·ξpt(ξ)û(ξ)dξ,
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for each t > 0 and u ∈ S(Rn), where pt(ξ) = e−ta(ξ). In this case, we observe
that for any t > 0 the symbol is pt (note that there is no x-dependence).
The function ξ → pt(ξ) is a positive definite function and the infinitesimal
generator of {T (t)}t≥0 is

Au(x) = −(2π)−(n/2)

∫
Rn

eix·ξa(ξ)û(ξ)dξ,

for all u ∈ C∞
0 (Rn), x ∈ Rn.

Let {T (t)}t≥0 be a strongly continuous semigroup on C∞(Rn). If ‖T (t)u‖
≤ ‖u‖ for all u ∈ C∞(Rn) and t ≥ 0, then {T (t)}t≥0 is a contraction semi-
group. A strongly continuous positive contraction semigroup on C∞(Rn) is
called a Feller semigroup on Rn. We have an integral representation of the
operators which form a Feller semigroup, analogous with the one of convolu-
tion semigroup (see [8], [5]).

Theorem 2.2. Let {T (t)}t≥0 be a Feller semigroup on Rn. For any t ≥ 0
there exists a unique function pt : Rn ×Rn → C measurable, locally bounded
and such that for any fixed x ∈ Rn, ξ → pt(x, ξ) is a continuous positive
definite function with the property that for any u ∈ S(Rn),

T (t)u(x) = (2π)−(n/2)

∫
Rn

eix·ξpt(x, ξ)û(ξ)dξ.

For u ∈ S(Rn), the infinitesimal generator A of {T (t)}t≥0 is

Au(x) = (2π)−(n/2)

∫
Rn

eix·ξa(x, ξ)û(ξ)dξ,

where a : Rn ×Rn → C,

a(x, ξ) =
d
dt

pt(x, ξ)
∣∣∣
t=0

.

Moreover, we deduce the following result.

Proposition 2.3. Let {T (t)}t≥0 be a Feller semigroup on Rn. For any
t ≥ 0 and u ∈ C2

b (Rn), T (t)u(x) = C(t)u(x) + D(t)u(x), with

C(t)u(x) :=
n∑

i,j=1

a
(t)
ij (x)

∂2u

∂xi∂xj
(x) +

n∑
i=1

b
(t)
i (x)

∂u

∂xi
(x) + γ(t)(x)u(x)

and

D(t)u(x) :=
∫
Rn

N (t)(x,dy)

{
u(y)− σ(t)

x (y)
[
u(x) +

n∑
i=1

∂u

∂xi
(x) · (yi − xi)

]}
,
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where γ(t)(x) = c(t)(x)+d(t)(x)+1, a
(t)
ij , b

(t)
i , c(t), d(t) are continuous functions,

a
(t)
ij = a

(t)
ji ,

n∑
i,j=1

a
(t)
ij (x)ξiξj ≥ 0, c(t) ≤ 0, σ

(t)
x is a certain cutt-off function and

N (t)(x,dy) is a certain Lévy kernel such that

d(t)(x) +
∫
Rn

N (t)(x,dy)
{
1− σ(t)

x (y)
}
≤ 0,

for all x ∈ Rn.

Proof. Indeed, T (t) − I satisfies the positive maximum principle on
C∞(Rn) for every t ≥ 0. The above formula follows from the last assertion of
Lemma 3.3 ([3], p. 2–34) and Corollary 3 ([3], p. 2–10). �

3. FRACTIONAL CAUCHY PROBLEM

For a function g with g̃ (s) :=
∫∞
0 e−stg (t) dt the Laplace transform, we

define the Caputo fractional derivative in time ∂β

∂tβ
g (t) as the inverse Laplace

transform of sβ g̃ (s)− sβ−1g (0). On the other hand,

Dβ
t g (t) =

dm

dtm

∫ t

0

(t− u)m−β−1

Γ (m− β)
g (u) du, m = [β]

is the Riemann-Liouville fractional derivative of order β. We have

∂β

∂tβ
g (t) =

∫ t

0

(t− u)m−β−1

Γ (m− β)
g(m) (u) du, m = [β].

If β is a positive integer then Dβ
t = ∂β

∂tβ
is the usual derivative operator.

We consider the fractional Cauchy problem

∂β

∂tβ
u (x, t) = Au (x, t) , u (x, 0) = f (x) ,

where 0 < β < 1, t ≥ 0 and A is the generator of bounded continuous semi-
group {T (t)}t≥0 on the Banach space X. We observe that p (x, t) = T (t) f (x)
is the unique solution to the abstract Cauchy problem

∂

∂t
p (x, t) = Ap (x, t) , p (x, 0) = f (x) ,

for any f in the domain of A and t > 0.
We note that the fractional Cauchy problem can be written in several

equivalent forms (see [1] and [2]).

Proposition 3.1. Assume 0 < β < 1. Let A be the generator of a
strongly continuous semigroup {T (t)}t≥0 on the Banach space X and g ∈
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C ([0,∞)×X) be Laplace transformable. Then for all f ∈ X the following
are equivalent:

(i) For all t > 0, the Riemann-Liouville derivative of g exists, g (t) ∈
D (A) , the Laplace transform of Dβ

t g (t) exists, and

Dβ
t g (t) = Ag (t) +

t−β

Γ (1− β)
f.

(ii) For all t > 0, the Caputo derivative of g exists, g (t) ∈ D (A) , the
Laplace transform of ∂β

∂tβ
g (t) exists, and

∂β

∂tβ
g (t) = Ag (t) , g (0) = f.

(iii) For all t > 0, the function g is differentiable, g (t) ∈ D (A) , the
Laplace transform of ∂

∂tg (t) exists, and

∂

∂t
g (t) = D1−β

t Ag (t) , g (0) = f.

(iv) The function g (t) is analytic on 0 < t < ∞, satisfies ‖g (t)‖ ≤ Meωt

on 0 < t < ∞ for some M , ω ≥ 0 and

g (t) =
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s) fds,

where gβ is such that ∫ ∞

0
e−λtgβ (t) dt = e−λβ

.

In the framework of Proposition 3.1, we define the family of bounded,
strongly continuous linear operators on X,

S (t) h (x) :=
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
T (s) f (x) ds, t ≥ 0.

On account of (iv) the function g (t) = S (t) f defines a solution to the frac-
tional Cauchy problem for any initial condition f ∈ X and this solution de-
pends continuously on the initial condition f.

In the sequel we consider X = C∞ (Rn) and A the generator of a Feller
semigroup {T (t)}t≥0 on Rn. Then by Theorem 2.2, for any t ≥ 0 there exists a
unique function pt : Rn×Rn → C measurable, locally bounded and such that
for any fixed x ∈ Rn, ξ → pt (x, ξ) is a continuous positive definite function
with the property that for any f ∈ S (Rn) ,

T (t)f (x) = (2π)−(n/2)
∫
Rn

eix·ξpt (x, ξ) f̂ (ξ) dξ.
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We suppose that the integral
∫∞
0

1
s1+1/β gβ

(
t

s1/β

)
ps (x, ξ) ds is convergent for

all x and ξ. The following statement is true.

Proposition 3.2. For any t ≥ 0 and f ∈ S (Rn) ,

S (t) f (x) = (2π)−(n/2)
∫
Rn

eix·ξqt (x, ξ) f̂ (ξ) dξ,

where qt : Rn ×Rn → C is measurable, locally bounded and such that for any
fixed x ∈ Rn, ξ → qt (x, ξ) is a continuous positive definite function.

Proof. In the formula of the definition of S (t) f (x) we apply the above
thoughts for the semigroup {T (t)}t≥0 on Rn. We define

qt (x, ξ) :=
t

β

∫ ∞

0

1
s1+1/β

gβ

(
t

s1/β

)
ps (x, ξ) ds

and we observe that qt satisfies the required properties. �

Remark 3.3. Using the relation from Proposition 2.3, we obtain the
“structure” of each operator S (t) , t ≥ 0. Since T (t) f (x) = C (t) f (x) +
D (t) f (x) , we have

S (t) f (x) =
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
C(s)f(x)ds+

+
∫ ∞

0

t

βs1+1/β
gβ

(
t

s1/β

)
D(s)f(x)ds.

Thus we can interpret the solution g (t) = S (t) f of the fractional Cauchy pro-
blem for the initial condition f as the sum of “diffusion part” and “Lévy part”.
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