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Abstract. A sequence (uj)j∈N of operators in L(X, Y ) is a (p, q)-summing multi-
plier (or (p, q)-summing sequence of operators), in short (uj) ∈ `πp,q (X, Y ), if there
exists a constant C > 0 such that, for any finite collection of vectors x1, x2, . . . xn in
X, it holds that

(

n
∑

j=1

‖ujxj‖
p
)1/p

≤ C sup
{(

n
∑

j=1

|x∗xj |
q
)1/q

; x
∗ ∈ BX∗

}

.

Some examples of these operators, inclusions between the spaces and connections
with spaces of multipliers are presented.∗

Mathematics Subject Classification (2000): 47B10.

Key words: Summing operators, vector-valued multipliers.

1. Introduction. Let X and Y be two real or complex Banach spaces and let
E(X) and F (Y ) be two Banach spaces whose elements are defined by sequences
of vectors in X and Y (containing any eventually null sequence in X or Y ). A
sequence of operators (un) ∈ L(X,Y ) is called a multiplier sequence from E(X)
to F (Y ) if there exists a constant C > 0 such that

∥

∥(ujxj)
n
j=1

∥

∥

F (Y )
≤ C

∥

∥(xj)
n
j=1

∥

∥

E(X)

for all finite families x1, . . . , xn in X.
The set of all of multiplier sequences is denoted by (E(X), F (Y )).
For the study of such multipliers for the cases of E(X) and F (Y ) correspond-

ing to vector-valued Hardy spaces, vector-valued Bergman spaces, vector-valued
BMOA or spaces of vector valued Bloch functions the reader is referred to [AB1,
Bl1, Bl2, Bl3, Bl4].

∗Partially supported by Proyecto BMF2002-04013.
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442 J.L. Arregui and O. Blasco

Given a real or complex Banach space X and 1 ≤ p ≤ ∞, we denote by `p(X),
`wp (X) and `p〈X〉 the Banach spaces of sequences in X with norms

‖(xj)‖`p(X) = ‖(‖xj‖)‖`p , ‖(xj)‖`wp (X) = sup
x∗∈BX∗

‖(x∗xj)‖`p

and
‖(xj)‖`p〈X〉 = sup{‖(x∗jxj)‖`1 : ‖(xj)

∗‖`w
p′

(X∗) = 1}

respectively. The space `p〈X〉 was first introduced in [C] and recently it has been
described in different ways (see [AB] for a description as the space of integral
operators from `p′ into X or [BD] and [FR] for the identification with the projective
tensor product `p⊗̂X).

The aim of this paper is to consider the cases where E(X) or F (X) correspond
to the spaces `p(X), `wp (X) or `p〈X〉. The study of such multipliers was initiated
in [Bl1] for the case E(X) = `wp (X), and F (Y ) = `p(Y ) where several examples
and results were achieved. The particular case E(X) = `wp (X) and F (Y ) = `q(K)
corresponds to the notion of (p, q)-summing sequences studied in [AB], and the
case uj = λjI, where I stands for the identity operator on a Banach space, was
considered in [AF] and [FR].

If 1 ≤ p ≤ q < ∞, the space Πp,q(X,Y ) of (p,q)-summing operators is formed
by those operators u : X → Y mapping sequences in `wq (X) into sequences in
`p(Y ), in other words u ∈ Πp,q if there exists C such that

‖(uxj)‖`p(Y ) ≤ C‖(xj)‖`wq (X)

for any finite family of vectors xj inX, and the least of such C is the (p, q)-summing
norm of u, denoted by πp,q(u). This, in our terminology, means that (uj) belongs
to (`wq (X), `p(Y )) if uj = u for all n.

If we set uj = λju then (uj) ∈ (`wq (X), `1(Y )) for all (λj) ∈ `p′ , where (1/p) +
(1/p′) = 1, if and only if u ∈ Πp,q(X,Y ). These facts suggest the use of the notation
`πp,q (X,Y ) instead of (`wq (X), `p(Y )) and `πp(X,Y ) for q = p.

A sequence (uj)j∈N of operators in L(X,Y ) is a (p, q)-summing multiplier, in
short (uj) ∈ `πp,q (X,Y ), if there exists a constant C > 0 such that, for any finite
collection of vectors x1, x2, . . . xn in X, it holds that

(

n
∑

j=1

‖ujxj‖
p
)1/p

≤ C sup
{(

n
∑

j=1

|x∗xj |
q
)1/q

; x∗ ∈ BX∗

}

.

The basic theory of p-summing and (p, q)-summing operators can be found, for
example, in the books [DJT], [DF], [J], [Pi] or [W].

The reader is referred to [AF] for the particular case p = q, X = Y and
uj = αj I. A scalar sequence (αj) is there defined to be a p-summing multiplier if
uj = αjI belongs to `πp(X,Y ).

In [AB] it was considered the case Y = K, what lead to define a new family of
spaces of vector valued sequences, not only for dual spaces, that were called spaces
of (p, q)-summing sequences in X.
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For any Banach space X, the space `πp,q (X) is defined to be the set of all
sequences (xj) in X such that there exists a constant C > 0 for which

(

n
∑

j=1

|x∗jxj |
p
)1/p

≤ C sup
{(

n
∑

j=1

|x∗jx|
q
)1/q

; x ∈ BX

}

for any finite collection of vectors x∗1, . . . , x
∗
n in X∗. The reader should notice that

`p〈X〉 = `π
1,p′

(X) and that a sequence (xj) ∈ `πp,q (X), considered as operators in
L(X∗,K) , corresponds to a (p, q)-summing multiplier. The main objective of such
a notion was to describe some classical aspects of the theory of geometry of Banach
spaces and operator ideals, from the point of view of those sequence spaces.

The aim of the paper is to get some descriptions for particular cases of multipli-
ers, to deal with the special case of (p, q)-summing multipliers and to get inclusions
between them. These objectives are done in Sections 2, 3 and 4 respectively.

Notation is fairly standard. We follow the usual terms L(X,Y ) for the space
of bounded linear operators between Banach spaces, BX and SX for the unit ball
and sphere in X, X ∼ Y if two Banach spaces are isomorphic and X ' Y if they
are isometrically isomorphic. We write the action of an operator or functional on
x merely as ux and x∗x, though we prefer to use x∗(x) or 〈x∗, x〉 sometimes; p′

denotes the conjugate exponent of p, x+ = max{x, 0} and K denotes R or C if no
difference is relevant.

2. Identifications of some spaces of multipliers. In [BS] another interme-
diate space of sequences of operator was considered by using the strong operator
topology.

Let us define for 1 ≤ p <∞ the space `sp(L(X,Y )) as

{(uj) : uj : X → Y linear and bounded,
∑

j

‖uj(x)‖
p <∞ for x ∈ X}.

We endow it with the norm ‖(uj)‖`sp(L(X,Y )) = sup‖x‖=1(
∑

j ‖uj(x)‖
p)1/p.

Of course we have

`p(L(X,Y )) ⊂ `sp(L(X,Y )) ⊂ `wp (L(X,Y )).

We shall see that these spaces of operators actually correspond to certain spaces
of multipliers.

Proposition 2.1. Let X and Y be Banach spaces, and 1 ≤ p, q ≤ ∞. For 1/r =
((1/p)− (1/q))+ we have that

(`q(X), `p(Y )) = `r(L(X,Y )).

Proof. Any multiplier sequence (uj) must be in `∞(L(X,Y )), as we see by taking
sequences in X of the form (0, . . . , 0, xj , 0, 0, . . . ). If q ≤ p it is plain that the
converse is true.
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Let q > p and 1/p = (1/r) + (1/q). By Hölder’s inequality,

(
∑

j

‖ujxj‖
p)1/p ≤ (

∑

j

‖uj‖
p‖xj‖

p)1/p ≤ (
∑

j

‖uj‖
r)1/r(

∑

j

‖xj‖
q)1/q.

Conversely, given n we note that the `r/p-norm of (‖uj‖
p)nj=1 equals, by duality, the

norm of (λj‖uj‖
p) in `1 for some 0 ≤ λj such that

∑

j λ
q/p
j = 1. Let βj = λ

1/p
j and

xj ∈ SX such that ‖ujxj‖ is arbitrarily close to ‖uj‖; then (
∑

j ‖uj(βjxj)‖
p)1/p

approximates (
∑

j ‖uj‖
pβpj )

1/p, and hence
(

n
∑

j=1

‖uj‖
r
)1/r

is bounded by a constant

independent of n. 2

We recall the following crucial description of `p〈X〉 to be used in the sequel.

Lemma 2.1. (see [BD],[FR]) Let X be a Banach space, and 1 ≤ p < ∞. Then
`p〈X〉 = `π

1,p′
(X) = `p⊗̂X.

Proposition 2.2. Let X and Y be Banach spaces, and 1 ≤ p, q ≤ ∞. For 1/r =
((1/p)− (1/q))+ we have that

(`q〈X〉, `
w
p (Y )) = `wr (L(X,Y )).

Proof. Only the case p < q needs a proof. Let 1/p = (1/r) + (1/q). Observe first
that (uj) ∈ `wr (L(X,Y )) if and only if

sup
‖x‖=1, ‖y∗‖=1

∞
∑

j=1

|〈uj(x), y
∗〉|r <∞.

Let (uj) ∈ `wr (L(X,Y )) and let xj = λjx where (λj) ∈ `q and x ∈ X . To show
that uj(xj) ∈ `wp (Y ) let us take y∗ ∈ Y ∗. By Hölder’s inequality

(
∑

j

|〈ujxj , y
∗〉|p)1/p ≤ (

∑

j

|〈ujx, y
∗〉|p|λj |

p)1/p ≤ (
∑

j

|〈ujx, y
∗〉|r)1/r‖(λj)‖q.

Now use Lemma 2.1 to extend to `q〈X〉 by continuity.
For the converse, assume (uj) ∈ (`q〈X〉, `

w
p (Y )). Since for any ‖x‖ = 1 and

‖y∗‖ = 1

(

∞
∑

j=1

|〈uj(x), y
∗〉|r)1/r = sup{(

∑

j

|〈ujx, y
∗〉|p|λj |

p)1/p : ‖(λj)‖q = 1},

we obtain, by writing xj = λjx, where (λj) ∈ `q and x ∈ X, which belongs to
`q〈X〉 by Lemma 2.1, that

(

∞
∑

j=1

|〈uj(x), y
∗〉|r)1/r ≤ ‖(uj)‖(`q〈X〉,`wp (Y )) sup{‖(xj)‖`q〈X〉 : ‖(λj)‖q = 1} ≤ C.

2
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Proposition 2.3. Let X,Y be Banach spaces, 1 ≤ p, q < ∞ and 1/r = ((1/p) −
(1/q))+. Then

(

`q〈X〉, `p(Y )
)

= `sr(L(X,Y )).

Proof. Observe that
(

`q(X), `p(Y )
)

⊂
(

`q〈X〉, `p(Y )
)

. Hence we may assume again
p < q and (uj) ∈ (`q〈X〉, `p(Y )). For each x ∈ X

(

∞
∑

j=1

‖uj(x)‖
r)1/r = sup{(

∑

j

‖uj(x)‖
p|λj |

p)1/p : ‖(λj)‖q = 1},

and then we obtain, writing xj = λjx, where (λj) ∈ `q, which belongs to `q〈X〉 by
Lemma 2.1,

(

∞
∑

j=1

‖uj(x)‖
r)1/r ≤ ‖(uj)‖(`q〈X〉,`p(Y )) sup{‖(xj)‖`q〈X〉 : ‖(λj)‖q = 1} ≤ C‖x‖.

Conversely, if (uj) ∈ `sr(L(X,Y )) and xj = λjx with (λj) ∈ `q and x ∈ X, then

(
∑

j

‖uj(xj)‖
p)1/p ≤ (

∑

j

‖uj(x)‖
p|λj |

p)1/p ≤ (
∑

j

‖ujx‖
r)1/r‖(λj)‖q.

Now use Lemma 2.1 to extend to `q〈X〉 by continuity. 2

There is still another case that is rather simple to describe.

Proposition 2.4. Let X and Y be Banach spaces, uj ∈ L(X,Y ) for j ∈ N,
1 ≤ p, q ≤ ∞ and 1/r = ((1/p)− (1/q))+.

Then (uj) ∈ (`q(X), `wp (Y )) if and only if (u∗j ) ∈ `sr(L(Y
∗, X∗)).

Proof. The case p ≥ q is rather direct. Let us assume p < q, (uj) ∈ (`q(X), `wp (Y ))
and y∗ ∈ Y ∗. Then

(
∑

j

‖u∗j (y
∗)‖r)1/r = sup{(

∑

j

|〈xj , u
∗
j (y

∗)〉|p)1/p : (
∑

j

‖xj‖
q)1/q = 1}

= sup{(
∑

j

|〈uj(xj), y
∗〉|p)1/p : (

∑

j

‖xj‖
q)1/q = 1} ≤ C‖y∗‖.

Assume (u∗j ) ∈ `sr(L(Y
∗, X∗)). By Hölder’s inequality

(
∑

j

|〈ujxj , y
∗〉|p)1/p = (

∑

j

|〈xj , u
∗
j (y

∗)〉|p)1/p ≤ (
∑

j

‖u∗j (y
∗)‖r)1/r(

∑

j

‖xj‖
q)1/q.

2
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3. (p,q)-Summing sequences of operators. A study of multiplier sequences
between `wq (X) and `p(Y ) is far more complicated. For the reason explained in the
introduction, we find it more convenient to change the notation from (`wq (X), `p(Y ))
to the following:

Definition 3.1. Let X and Y be Banach spaces, and let p, q ≥ 1. A sequence
(uj)j∈N of operators in L(X,Y ) is a (p, q)-summing multiplier if there exists a
constant C > 0 such that, for any finite collection of vectors x1, x2, . . . xn in X, it
holds that

(

n
∑

j=1

‖ujxj‖
p
)1/p

≤ C sup
{(

n
∑

j=1

|x∗xj |
q
)1/q

; x∗ ∈ BX∗

}

.

We use `πp,q (X,Y ) to denote the set of (p, q)-summing multipliers, and πp,q[uj ]
is the least constant C for which (uj) verifies the inequality in the definition. In
order to avoid ambiguities, sometimes we shall use πp,q[uj ;X,Y ]. Of course if
p = q we simply say that the sequence (uj) is a p-summing multiplier and write
`πp(X,Y ), πp[uj ;X,Y ] (see [Bl1]).

Remarks 3.1.

1. The obvious modifications for p =∞ or q =∞ make sense, but then

`πp,∞(X,Y ) = `p(L(X,Y )) and `π∞,q
(X,Y ) = `∞(L(X,Y )).

2. Let u 6= 0 be a bounded linear operator between two Banach spaces X and
Y . If u maps sequences (xj) ∈ `q(X) into sequences (uxj) ∈ `p(Y ) then necessarily
q ≤ p ( for q > p one can take xj = (1/j)1/px, where x /∈ Ker(u), to get a
contradiction).

This example shows that Πp,q(X,Y ) = {0} if p < q, but in our setting if
c00(L(X,Y )) stands for all sequences of operators with a finite number of non-
zero elements, then, for any 1 ≤ p, q ≤ ∞, one gets

c00(L(X,Y )) ⊂ `πp,q (X,Y ).

Actually, if uj = 0 for all j > N then πp,q[uj ] ≤ N1/p max
j≤N

||uj ||.

3. For any Banach space X, and the usual identification of X and L(K, X), it
follows from Proposition 2.1 that if 1/r = ((1/p)− (1/q))+ then

`πp,q (K, X) = `r(X).

4. For any couple of Banach spaces X and Y , 1 ≤ p, q <∞ and uj ∈ L(X,Y ),
we clearly have

(uj) ∈ `πp,q (X,Y ) if and only if (λjuj) ∈ `π1,q
(X,Y ) for all (λj) ∈ `p′ .

Moreover
πp,q[uj ;X,Y ] = sup{π1,q[λjuj ;X,Y ] : ||λj ||`p′ = 1}.
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5. Note that if X,Y are Banach spaces and uj ∈ L(X,Y ) then

πp,q[uj ] = sup
‖y∗j ‖=1

πp,q[y
∗
juj ;X

∗] .

Let us mention that the characterization of the absolutely summing operators in
terms of unconditional series can be generalized as follows, with the same standard
proof (see [DJT]):

Proposition 3.2. A sequence (uj) is in `πp,1(X,Y ) if and only if it holds that for
any unconditionally convergent series

∑

xj in X we have (ujxj)j ∈ `p(Y ) .

The subspace of L(`wq (X), `p(Y )) formed by (p, q)-summing sequences of oper-
ators is closed, and then the summing norm πp,q is complete:

Proposition 3.3. For any X and Y Banach spaces, and for any 1 ≤ p, q < ∞,
(`πp,q (X,Y ), πp,q) is a Banach space.

Easy examples can be constructed by tensoring some elements in classical
spaces.

Examples 3.1. Let X and Y be Banach spaces, and 1 ≤ p, q ≤ ∞.

(1) `πr,q (X,K)⊗̂`s(Y ) ⊂ `πp,q (X,Y ) for 1
p = 1

r +
1
s .

(2) `s⊗̂Πr,q(X,Y ) ⊂ `πp,q (X,Y ) for 1
p = 1

r +
1
s .

In particular `p⊗̂X ⊂ `π
1,p′

(X) = `p〈X〉.

(3) `s(Y )⊗̂X∗ ⊂ `πp,q (X,Y ) for p < q and 1
p = 1

q +
1
s .

Proof. (1) Take uj = x∗j ⊗ yj where (x∗j ) ∈ `πr,q (X,K) and (yj) ∈ `s(Y ). If
(xj) ∈ `wq (X) then (〈x∗j , xj〉) ∈ `r(K). Hence (uj(xj)) = (〈x∗j , xj〉yj) ∈ `p(Y ).

(2) Take uj = λju where u ∈ Πr,q(X,Y ) and (λj) ∈ `s(K). If (xj) ∈ `wq (X)
then (u(xj)) ∈ `r(Y ). Hence (uj(xj)) = (λju(xj)) ∈ `p(Y ).

(3) Take uj = x∗ ⊗ yj where x∗ ∈ X∗ and (yj) ∈ `s(Y ). If (xj) ∈ `wq (X) then
(〈x∗, xj〉) ∈ `q(K). Hence (uj(xj)) = (〈x∗, xj〉yj) ∈ `p(Y ). 2

Theorem 3.1. Let X,Y be Banach spaces and 1 < p. Then

`sp(L(X,Y )) ⊂ `πp,1(X,Y ).

Proof. Let u1, ..., un ∈ L(X,Y ) and x1, ..., xn ∈ `w1 (X). Then
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(

n
∑

j=1

‖uj(xj)‖
p)1/p

= sup{
∣

∣

n
∑

j=1

〈uj(xj), y
∗
j 〉
∣

∣ :
n
∑

j=1

‖y∗j ‖
p′ = 1}

= sup{
∣

∣

∫ 1

0

〈

n
∑

j=1

xjrj(t),

n
∑

j=1

u∗j (y
∗
j )rj(t)〉dt

∣

∣ :

n
∑

j=1

‖y∗j ‖
p′ = 1}

≤ ‖(xj)‖`w
1

(X) sup{

∫ 1

0

‖

n
∑

j=1

u∗j (y
∗
j )rj(t)‖dt :

n
∑

j=1

‖y∗j ‖
p′ = 1}

≤ ‖(xj)‖`w
1

(X) sup{
∣

∣〈

n
∑

j=1

u∗j (y
∗
j )rj(t), x〉

∣

∣ :

n
∑

j=1

‖y∗j ‖
p′ = 1, ‖x‖ = 1, t ∈ [0, 1]}

≤ ‖(xj)‖`w
1

(X) sup{
∣

∣

n
∑

j=1

〈uj(x)rj(t), y
∗
j 〉
∣

∣ :
n
∑

j=1

‖y∗j ‖
p′ = 1, ‖x‖ = 1, t ∈ [0, 1]}

≤ ‖(xj)‖`w
1

(X) sup{(

n
∑

j=1

‖uj(x)‖
p)1/p : ‖x‖ = 1}.

2

We finish this section with a result on multipliers in
(

`πp,q (X), `p(Y )
)

, showing
that these spaces coincide for any 1 ≤ p ≤ q:

Theorem 3.2. Let X,Y be Banach spaces and 1 ≤ p ≤ q. Then

(

`πp,q (X), `p(Y )
)

= `sq(L(X,Y )).

Proof. Assume first that (uj) ∈
(

`πp,q (X), `p(Y )
)

; let r such that 1/p = (1/r) +
(1/q). Given x ∈ X, we may write

‖(ujx)‖q = ‖(ujαjx)‖p

for some numbers (αj) such that ‖(αj)‖r = 1. Now the assumption and (2) in
Examples 3.1 give

‖(ujx)‖q ≤ ‖(uj)‖(`πp,q (X),`p(Y ))πp,q[αjx] = ‖(uj)‖(`πp,q (X),`p(Y ))‖x‖.

Conversely, let uj ∈ `sq(L(X,Y )) and (xj) such that πp,q[xj ] ≤ 1. Then

‖(ujxj)‖p = ‖(y∗j (ujxj))‖p = ‖((u∗jy
∗
j )xj)‖p

for some y∗j ∈ Y ∗ with ‖y∗j ‖ = 1, so
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‖(ujxj)‖p ≤ πp,q[xj ]‖(u
∗
jy
∗
j )‖`wq (X∗) ≤ sup

‖x‖≤1

‖((u∗jy
∗
j )x)‖q

= sup
‖x‖≤1

‖(y∗j (ujx))‖q ≤ sup
‖x‖≤1

‖(ujx)‖q.

Remark 3.2. It is known and easy (see [BS], Proposition 2.5) that `sq(L(X,Y ) '
L(X, `q(Y )). If 1 ≤ p ≤ q then

(

`πp,q (X), `p(Y )
)

' L(X, `q(Y )).

The isometry is given by mapping (uj) ∈
(

`πp,q (X), `p(Y )
)

to the bounded linear
operator U : X → `q(Y ) defined by U(x) = (ujx).

Remark 3.3. Let X,Y be Banach spaces and 1 ≤ q. If UC(Y ) stands for the
space of unconditionally convergent series, also identified with the space of compact
operators K(c0, Y ) then (see [FR], Theorem 3.13)

(

`q(X), UC(Y )
)

' L(`q(X), Y ).

The isometry is given by mapping (uj) ∈
(

`q〈X〉, UC(Y )
)

to the bounded linear
operator defined by T(uj)(xj) =

∑

j uj(xj).

4. Inclusions among the spaces `πp,q
(X). Let us point out first some ele-

mentary embeddings among these spaces.

Proposition 4.1. Let 1 ≤ r, s < ∞, 1 ≤ p1 ≤ p2, 1 ≤ q1 ≤ q2 and 1 ≤ p ≤ q.
Then

`πp1,s(X,Y ) ⊆ `πp2,s(X,Y ) ,

`πr,q2 (X,Y ) ⊆ `πr,q1 (X,Y ) ,

`πp(X,Y ) ⊆ `πq (X,Y )

with continuous inclusions of norm 1.
In particular, for 1 ≤ p, q <∞,

`π1,q
(X,Y ) ⊂ `π1

(X,Y ) ⊂ `πp(X,Y ) ⊂ `πp,1(X,Y ).

Proof. The proofs of the two first embeddings are straighforward.
To see the last one, take (uj) ∈ `πp(X,Y ), (xj) ∈ `wq (X) and (λj) ∈ `r where

(1/r) + (1/q) = (1/p). Then

(

n
∑

j=1

|λjuj(xj)|
p)1/p ≤ πp[uj ]‖(λjxj)‖`wp (X) ≤ πp[uj ]‖(xj)‖`wq (X)‖(λj)‖`r .
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Taking the supremum over the unit ball of `r we get the result. 2

We can actually get a general formulation which cover all the cases above and
many more ones. Similar proof was given in [AB], but we include here the modifi-
ciation for sequences of operators for the sake of completeness.

Theorem 4.1. Let X and Y be Banach spaces, 1 ≤ p ≤ r, 1 ≤ q, s and (1/q) +
(1/r) ≤ (1/p) + (1/s). Then `πp,q (X,Y ) ⊆ `πr,s(X,Y ) , with continuous inclusion
of norm 1.

Proof. The case s ≤ q follows from the norm 1 inclusions `ws (X
∗) ⊆ `wq (X

∗)
and `p(X) ⊆ `r(X). For q < s and either r = ∞ or s = ∞ Proposition 2.1 and
Remarks 3.1 give the result. So we assume that q < s and that both r, s <∞. Then
1 < r/p, s/q <∞; let a and b their conjugate numbers, that is 1 = (1/a)+ (p/r) =
(1/b) + (q/s).

If πp,q[uj ] ≤ C, for any finite set of vectors xj in X we have, for appropiate
scalars αj ≥ 0 such that

∑

αaj = 1, that

(

∑

j

‖ujxj‖
r
)1/r

=
(

∑

j

‖uj(α
1/p
j xj)‖

p
)1/p

≤ C sup
‖x∗‖≤1

(

∑

j

α
q/p
j |x∗xj |

q
)1/q

.

From our assumptions we have that ap ≤ bq, so that
∑

j

α
q
p
b

j ≤ 1, and for any

x∗ we get, by Hölder’s inequality,
(
∑

j α
q/p
j |x∗xj |

q
)1/q

≤
(
∑

j |x
∗xj |

s
)1/s

. This
shows that πr,s[uj ] ≤ C. 2

Note that, in the scalar-valued case, for (1/p)− (1/q) = (1/r)− (1/s) we have

(`p, `q) = (`r, `s).

To find cases where `πp,q (X,Y ) = `πr,s(X,Y ) for (1/q) + (1/r) = (1/p) + (1/s)
we need the following lemma:

Lemma 4.1. (see Lemma 3, [AB]) Let X be a Banach space and 1 < r <∞. Then
`w1 (X) = `r`

w
r′(X) if and only if L(c0, X) = Πr(c0, X).

Proposition 4.2. Let X be a Banach space such that L(c0, X) = Πs′(c0, X) for
some 1 < s < ∞ . Then `πr,s(X,Y ) ⊆ `πp,q (X,Y ) for 1 ≤ p, q, r, s < ∞ such that
(1/p)− (1/q) = (1/r)− (1/s) and for any Banach space Y .

Proof. Let us take (uj) ∈ `πr,s(X,Y ) and (xj) ∈ `wq (X). To show that (uj(xj)) ∈
`p, it suffices to see that for any (αj) ∈ `q′ we get (αjuj(xj)) ∈ `u where (1/p) +
(1/q′) = 1/u. Given now a sequence (αj) ∈ `q′ we have that (αjxj) ∈ `w1 (X).
Using Lemma 4.1 we have that there exists (βj) ∈ `s′ and (yj) ∈ `ws (X) so that
αjxj = βjyj . Therefore (αjuj(xj)) = (βjuj(yj)) ∈ `s′`r = `u because 1/u =
(1/p) + (1/q′) = (1/s′) + (1/r). 2
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Combining Theorem 4.1 and Proposition 4.2 we get the main result of this
section:

Theorem 4.2. Let X be a Banach space such that L(c0, X) = Πs′(c0, X) for some
1 < s < ∞ and let Y be any Banach space. Then `πr,s(X,Y ) = `πp,q (X,Y ) for
1 ≤ p, q, r, s <∞ such that 1 ≤ p ≤ r and (1/p)− (1/q) = (1/r)− (1/s).

Corollary 4.1. (see [Bl1],Theorem 3.8 ) If X has cotype 2 and Y is any Banach
space then `πp,q (X,Y ) = `πr,2(X,Y ) for any p ≤ r and 1/q = (1/p)− (1/r)+(1/2).

In particular `π1
(X,Y ) = `π2

(X,Y ) and `π1,q
(X,Y ) = `πr,2(X,Y ) for 1/r =

(1/q′) + (1/2).

Proof. Use Lemma 4.1 and the fact that L(c0, Y ) = Π2(c0, Y ) for any Y of cotype
2. 2
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