INNOVATIVE JOURNAL Contents lists available at <u>www.innovativejournal.in</u>

CHS (155N No. 2277-4920)

ASIAN JOURNAL OF CURRENT ENGINEERING AND MATHS

Journal homepage: <u>http://www.innovativejournal.in/index.php/ajcem</u>

ON CHARACTERIZATION OF *u* - IDEALS DETERMINED BY SEQUENCES

John Wanyonyi Matuya^{1*}, Patrick Makila², Simiyu Achiles², Shem Aywa², Musundi Sammy³

¹Narok University College P.O Box 861-20500, Kenya. ²Masinde Muliro University P.O Box 190-50100, Kenya ³Chuka University College P.O Box 109-60400, Kenya

ARTICLE INFO

ABSTRACT

Corresponding Author John Wanyonyi Matuya Narok University College P.O Box 861-20500, Kenya. <u>johnmatuya@yahoo.com</u>

Key Words: Ideals, *u* - ideals, strict *u* - ideals, hermitian

The area of ideals is important in the study of Analysis, algebra, Geometry and Computer science. The various types of ideals have been studied, for example m ideals and h ideals. The m ideals defined on real Banach spaces are referred to as u - ideals. The natural examples of u - ideals with respect to their biduals, are order continuous Banach lattices. Using the approximation property, we shall study properties of u - ideals and their characterization. We define the set of compact operators K(X) on X to be u - ideals given that

X is a separable reflexive Banach space with approximation property if and only if there is a sequence (T_n) of finite rank of operators with $\lim_{n\to\infty} ||I-2T_n||=1$ and $\lim_{n\to\infty} T_n x = x$. We shall show that *u*-ideals containing no copies of sequences ℓ_1 are strict *u*-ideals.

Mathematics Subject classification: 47B10; 46B10; 46A25

©2012, AJCEM, All Right Reserved.

INTRODUCTION

The notion of ideals was first introduced by Alfsen and Effros [4] in the early 1970's. They defined a closed subspace X of Banach Space Y to be an ideal in Yif the orthogonal complement of X in the dual of Y is the kernel of a norm one projection. That is, $\beta: Y^* \to Y^*$ such that $X^{\perp} = \{ y^* \in Y^* : y^*(x) = 0, \forall x \in X \} = Ker\beta$. A simple example is that X is always an ideal in X^{**} . Let $O: X^{***} \to X^{***}$ be the identity. Then, clearly Q is a projection and $KerQ = \{0\}$. Now $X \subseteq X^{**}$ and so $X^{\perp} \subset X^* \subset X^{***}$. However, $X^{\perp} = \{x^* \in X^* \mid x^*(x) = 0, \forall x \in X\} = \{0\}.$ Therefore, $KerQ = X^{\perp}$. This shows that X is always an ideal in X^{**} . Since then scholars have studied various types of ideals and their properties. They have borrowed a lot from algebra since ideals are known to have absorbing properties. For instance an ideal I of a ring R which is an additive subgroup and is such that for all $x \in R$ and $y \in I$, $x \ y \in I$. The *m*-ideals defined on a real

Banach space are called u-ideals whereas on a complex Banach space is called h-ideals. Let X be a subspace of a Banach space Y. We will say that X is an m-summand if it is the range of a contractive projection and that X is an ideal in Y if X^{\perp} is the kernel of a contractive projection on Y^* . Godefroy, Kalton and Saphar [3] defined u-ideals as the generalizations of m-ideals. The subspace K(X,Y) is an ideal in L(X,Y) if $_{K(X,Y)}$ is the kernel of a contractive projection β in $_{L(X,Y)^*}$. That is, $\beta: Y^* \to Y^*$ such that $_{X^{\perp}=\{ y^* \in Y^*: y^*(x)=0 \quad \forall x \in X \}}$. Moreover, K(X,Y) is a u-ideal in $(L(X,Y),\|\|)$ if $\|I-2\beta\|=1$. The natural examples of u-ideals with respect to their biduals, are order-continuous Banach lattices.

In this paper we fill a few gaps in u -ideals determined by sequence spaces ℓ_1 ,

 ℓ_{∞} , c_0 . We show that if X is a separable u-ideal containing no copies of ℓ_1 then, it is a strict u-ideal. In section 2 we discuss u-ideals and their characterization. In section 3 we characterize strict u-ideals determined by sequence space ℓ_1

Remark 1.1: The sequence spaces ℓ_1 and ℓ_{∞} can never be strict *u*-ideals in their biduals since dual spaces are 1-complemented in their biduals [5].

2.0 *u* **-IDEALS**

We say that a closed subspace X of Y is a u -summand if there is a subspace Z

(the *u*-complement of X) so that $X \oplus Z = Y$ and if $x \in X$, $z \in Z$ then ||x+z|| = ||x-z||. If X is a *u*-summand then the induced projection $P: Y \to X$ with P(Y) = X and KerP = Z satisfies ||I-2p|| = 1.

Lemma 2.1: Suppose *X* is a closed subspace of *Y*. Then there is at most one projection P of Y onto *X* satisfying ||I - 2p|| = 1.

Proof: Suppose P and Q are two projections such that ||I-2P|| = ||I-2Q|| = 1. Then (I-2p)(I-2Q) = (I-2Q) - 2P(I-2Q) = I - 2Q - 2P + 4PQNow, since Q(Y) = X, we have (PQ) y = P(Qy) = Qy, where $y \in Y$ and $Qy \in X$. Therefore (I-2p)(I-2Q) = I - 2Q - 2P + 4Q = I + 2Q - 2P = I + 2(Q-P).

(I-2p)(I-2Q) = I - 2Q - 2P + 4Q = I + 2Q - 2P = I + 2(Q-P).Thus we have

$$((I-2P)(I-2Q))^{2} = (I+2(Q-P))(I+2(P-Q))$$

= I+2(Q-p)+2(Q-P)(I+2(Q-P))
= I+2(Q-P)+2(Q-P)+4(Q-P)
= I+4(Q-P)+4(Q^{2}-PQ-QP+P^{2})
= I+2.2(Q-P).
((I-2P)(I-2Q))^{3} = (I+4(Q-P))(I+2(Q-P))

In general $((I-2P)(I-2Q))^n = I + 2n(Q-p)$. Since

 $\left\|I - 2n(Q - P)\right\| = \left\|I - 2n(P - Q)\right\| \ge \left|1 - 2n\left\|P - Q\right\|\right\| \xrightarrow{n}{\infty} \infty \quad \text{if}$ $\left\|P - Q\right\| \neq 0$

and
$$\left\| \left((I-2P)(I-2Q) \right)^n \right\| \le \|I-2p\|^n \|I-2Q\|^n = 1$$
,
We have a contradiction, unless $P = Q$.

Lemma 2.2: If A is a u -ideal in B then A is a u -summand if and only if W is weak^{*} -closed.

Proof: Clearly if W is weak^{*}-closed then X is weak^{*}continuous and so $X = Y^*$ where ||I - 2Y|| = 1 and Y(B) = A. Conversely, suppose A is a *u*-summand and let Y be a projection onto A with ||I - 2Y|| = 1. Then $I - Y^*$ has a range A^{\perp} and so $I - Y^* = I - X$ by Lemma 2.1. Hence X is weak^{*}-continuous.

Proposition 2.1: Let *X* be a closed subspace of a Banach space *Y*. If K(Z, X) is a *u*-ideal in K(Z, Y) for some Banach space $Z \neq \{0\}$, then *X* is *u*-ideal in *Y*.

Proof: Suppose $\overline{K(Z,X)}$ is an ideal in $\overline{K(Z,Y)}$. Let E be a finite dimensional subspace of Y. Let $z \in Z$ and $z^* \in Z^*$ be such that $||z|| = ||z^*|| = z^*(z) = 1$. Denote

$$\begin{split} T &= \left\{ z^* \otimes y : y \in E \right\} \subseteq K(Z,Y). \text{ Let } \varepsilon > 0 \quad \text{and let} \\ V:T &\to \overline{K(Z,X)} \text{ be an operator such that } \|V\| \leq 1 + \varepsilon \\ \text{and } V(S) &= S \text{ for all } s \in T \cap K(Z,X). \text{ Now define a} \\ \text{map } U:E \to X \quad \text{by } U_y = \left(V\left(z^* \otimes y\right) \right) z. \text{ Then } U \\ \text{"locally 1-complements" X in Y by local formulations of } u \text{ -ideals } [1, \text{Lemma 2.9}]. \end{split}$$

3. STRICT *u* **-IDEALS**

In this section we consider strict u-ideals, that is, the Banach space X which are strict u-ideals in their biduals X^{**} . It has already been show that Banach spaces containing copies of ℓ_1 are not strict u-ideals [3, Theorem 5.1]. We show that separable Banach spaces containing no copies of ℓ_1 are strict u-ideals. A Banach space X is said to be a strict u-ideal in its bidual when the canonical decomposition $X^{***} = X^* \oplus X^{\perp}$ is unconditional. In other words for X to be a strict u-ideal the u-complement of X^{\perp} must be norming, that is, the range V of the induced projection on X^{***} is a norming subspace of X^* .

Remark 3.1: The sequence space ℓ_1 is a *u*-ideal since it is a *u*-summand in ℓ_1^{**} . It is therefore not a strict *u*-ideal (Lemma 2.1).

Proposition 3.1: Let X be a Banach space containing no copy of ℓ_1 . If X is a strict u-ideal in X^{**} and K(Z,X) is an Ideal in $K(Z,X^{**})$ for a reflexive Banach space Z, then K(Z,X) is a strict u-ideal in $K(Z,X^{**})$.

Proof: Let $\lambda: X^{***} \to X^{***}$ be the projection from the definition of a strict *u*-ideal and let Q denote the ideal projection on $K(Z, X^{**})^*$. It follows that X^* does not contain any proper norming closed subspace [3, proposition 5.2]. But then X has the unique extension property thus K(Z, X) is a *u*-ideal in $K(Z, X^{**})$. However Q is the desired *u*-ideal projection and $Q(x^{***} \otimes z) = (\lambda x^{***}) \otimes z$ for $x^{***} \in X^{***}$, $z \in Z$. In view of this equality the range of Q contains the functionals $x^{***} \otimes z$ with $x^{***} \in ran\lambda$ and $z \in Z$. But this functionals give the norm of any $V \in K(Z, X^{**})$ by $\binom{\||V|\|}{\|V\|} = \sup \binom{\|x^{***}(V_T)\|}{\|V\|} = \sup \binom{\|x^{***}(V_T)\|}{\|V\|} = \max \binom{\|x^{****}(V_T)\|}{\|V\|} = \max \binom{\|x^{***}(V_T)\|}{\|V\|} = \max \binom{\|x^{***}(V_T)\|}{\|V\|}$

$$\left(\left\| V \right\| = \sup \left\{ \left| x^{***} \left(Vz \right) \right| : x^{***} \in A_{ran\lambda}, z \in Az \right\} \right) \text{ because}$$

the ran λ is a norming subspace for X^{**} in X^{***} in fact

 $ran\lambda = X^*$ (cf. [3]). We now characterize the *u*-ideals determined by the sequence space ℓ_1 .

Remark 3.2: A separable Banach space containing ℓ_1

cannot be a strict *u* -ideal in its bidual [5].

Theorem 3.1: Let A be a u-ideal. The following are equivalent:

- i) A is a strict u -ideal.
- ii) A^* is a u -ideal.
- iii) $\|I 2p\| = 1$.
- iv) Every separable subspace of A has separable dual.
- v) A contains no copy of ℓ_1 .

Proof. (i) \rightarrow (*ii*) This is clear since A is a separable Banach space. In this case the operator $V: A^{**} \rightarrow A^{**}$ is an isometry. Since V is hermitian it follows that $V(A) = V^2(A)$ and so V is invertible on V(A). This implies that V is surjective and so its spectrum is contained in the unit circle. Since its hermitian $\delta(V) \subset \{\pm 1\}$. However $\|I - 2V\| = 1$ and so the spectrum of V reduces to $\{1\}$. Hence the spectrum of V - I = 0 from Sinclair theorem [2] and N=F so that A^* is u-summand in A^{***} . (ii) \rightarrow (*iii*) Let A^* contain no copy of c_0 . Then since it is a dual space, ℓ_{∞} embeds into A^* and so has the property (u); which is not true. Therefore A^* is a usummand in A^{***} . Let F: $A^{***} \rightarrow A^*$ be a hermitian projection. Let N: $X^{***} \rightarrow V$ be the hermitian projection associated with the fact that A is a u-ideal. Then

2(FN - NF) is hermitian. Note that since F is also a norm one projection onto A^* and so FN is a hermitian on A^* . Hence $I_{A^*} - FN$ is a hermitian implying that $I_{A^*} - FN = 0$ on A^* and thus FN is another contractive projection onto A^* . Hence NF is a contractive projection. Thus $A^* = V$ and F=P.

(iii) $\rightarrow (iv)$ Let A be a separable space for which A^* is separable then by [3, Theorem 2.8] the hermitian condition holds.

(iv) \rightarrow (v) It is clear that A contains no copy of ℓ_1 since it has a separable dual.

(v) \rightarrow (*i*) V is an identity on X^{**} and so F = P and A is a strict u-ideal.

Proposition 3.1: Assume that *X* is non-reflexive. If *X* is a strict *u* -ideal in its bidual then every subspace of *X* contains no copy of ℓ_1 .

Proof: Since V is norming the associated operator $T: X^{**} \to X^{**}$ is an isometry. If X contains a copy of ℓ_1 then, there exists $x^{**} \in X^{**}$ with $||x^{**}|| = 1$ and such that $||x^{**} + x|| = ||x^{**} - x||$ for all $x \in X$. If ||I - P|| = k then we can find a net (x_d) in X, converging weak^{*} to Tx^{**} , with limsup $||Tx^{**} - x_d|| \le k$. Since T is an isometry

and

$$\begin{split} \limsup \left\| x^{**} - x_d \right\| &\leq k \text{ ,Therefore} \\ \limsup \left\| x^{**} + x_d \right\| &= \limsup \left\| Tx^{**} + x_d \right\| \leq k \text{ . However,} \\ \limsup \left\| Tx^{**} + x_d \right\| &\geq 2 \text{ . It is clear that every subspace of} \\ \text{a strict } u \text{ -ideal in its bidual does not contain } \ell_1. \end{split}$$

Proposition 3.2: Let *X* be a Banach space containing no copy of ℓ_1 . The following statements are equivalent:

- (i) X is a strict u -ideal.
- (ii) Every separable closed subspace Y of X and every element in the bidual of Y satisfy the hermitian condition.

Proof: Assuming that X is separable. We will show that X^* is separable. Let V be a closed norming subspace of X. Then if $x^{**} \in V^{\perp}$ we have $||x^{**} - x|| \ge ||x||$ for all $x \in X$. In particular $\inf_{x \in s_x} ||x^{**} - 2x|| \ge 2$. Therefore $v = x^*$ and since X has no proper norming subspaces it follows that X^* is separable. Let there be a sequence (x_n) converging weak^{*} to x^{**} so that $\lim ||x^{**} - 2x_n|| = 1$. By density argument this holds for all $x^{**} \in s_{x^{**}}$ and which shows that ||I - 2p|| = 1. If X is nonseparable then, every separable subspace Y satisfies u-constant of Y to be 1. This implies that the u-constant of X is 1 and hence X is a strict u-ideal in X^{**} containing no copy of ℓ_1 .

Proposition 3.3: Let A be a Banach space containing no copy of ℓ_1 . Show that

- (i) A* has an approximating sequence (a_n) and A is a strict u-ideal iff A has an approximating sequence (a_n).
- (ii) A and A^* have an approximating sequence (a_n) iff A has an approximating sequence (a_n) .

Proof: Let (a_n) be an unconditional approximating sequence for A^* . Then since A^*

contains no copy of c_0 [3, Theorem3.5] there is a projection $Q: A^{***} \to A^*$ by $Qx^{***} = \lim a_n^{**}x^{***}$. It follows that ||I-2p|| = 1. However, if A is a strict u-ideal then ||I-2p|| = 1 and by Lemma 2.1, Q=P. Now let $a_n^*: A^{**} \to A^{**}$. Let $c: A^{**} \to A^{**} / A$ be the quotient map, and let $J: A \to A^{**}$ be the canonical embending. Let $H_n = ca_n^{**}J: A \to A^{**}$. Then $H_n^*: A^{\perp} \to A^*$ and coincides with a_n^{**} . Thus H_n^* converges to zero for the strong operator topology implying that H_n converges to zero for a weak topology on $K(A, A^{**} / A)$. Therefore by approximating properties $\lim_{n \to \infty} a_n = a$. In (ii) A has an

approximating sequence (a_n) such that (a_n^*) is an approximating sequence for A^* and such that $\lim_{n\to\infty} ||I-2a_n|| = 1$. Then $H_n - A_n$ coverges weakly to zero in K(A) and so there is an approximating sequence of convex combinations R_n of H_n such that $\lim_{n\to\infty} ||I-2R_n|| = 1$.

Open questions:

(i) Is a Banach space X a u-ideal in X^{**} ?.

(ii) If the dual of X is a u-summand in X^{**} , does it imply that it is a strict u-ideal ?.

(iii) Let X be a separable reflexive Banach space. Can we show that K(X) is a

u -ideal in $\ell^{w}(X)$ iff X has an approximating sequence?.

CONCLUSION

We have shown that u-ideals containing no copies of

sequences ℓ_1 are strict u - ideals.

ACKNOWLEDGEMENT

The authors convey their appreciation to National Council of Science and Technology (NCST), Kenya for funding this research work.

REFERENCES

- 1. Lima and E. Oja, *ideals of compact operators*, J. math. soc. **77** (2004) 91-110.
- 2. M. Sinclair, *The norm of a hermitian element in a Banach algebra*, Proc.Amer. Math.Soc, **28** (1971) 446-450
- 3. G. Godefrey, J. Kalton and P. Saphar, *unconditional ideals in Banach spaces*, studia mathematica, **104** (1993) 13-59.
- 4. R. Alfsen and K. Effros, *Structure in real Banach spaces,* Ann. of math, **96** (1972) 98-128.
- 5. V. Lima and A. Lima, *strict u-ideals in Banach spaces*, studia Math, **3**(2009) 275-285.