

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE AND
BACHELOR OF EDUCATION

COURSE CODE: MAA 314/MAA 315

COURSE TITLE:

METHODS I /ANALYTICAL APPLIED

MATHEMATICS

DATE: 14/11/2022

TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS

Answer Questions ONE and Any other TWO

QUESTION ONE (30 MARKS)

- a. Let f(x) be a 2π -periodic function such that $f(x) = x^2$ for $x \in [-\pi, \pi]$. Find the Fourier series for the parabolic wave. (8mks)
- b. Prove that $J_0(x) = -J_1(x)$ (5mks)
- c. Using Rodrigues's formula derive the first four terms (5mks)
- d. State whether the following functions are even or odd (3mks)
 - i. $f(x) = \sin x; \ \frac{-\pi}{2} < x < \frac{\pi}{2}$
 - ii. $f(x) = \cos x; \quad \frac{-\pi}{2} < x < \frac{\pi}{2}$
- e. Evaluate $\int_0^\infty x^3 e^{-4x} dx$ using special functions (4mks)
- f. Evaluate the Bessel function $J_0(x)$ and $J_1(x)$ when x=1, correct to 3 decimal places (5mks)

QUESTION TWO (20 MARKS)

- a. classify the following equation (4mks)
 - i. $2U_{xx} 4U_{xy} + 2U_{yy} = 0$
 - ii. $9U_{xx} + 20U_{xy} + 5U_{yy} = 0$
- b. Using direct integration to solve the equation $\frac{\partial^2 U}{\partial x^2} = \sin(x+y)$ given that at y = 0, $\frac{\partial U}{\partial x} = 1$ and at x = 0, $U = (y-1)^2$ (6mks)
- c. Use the method of separation of variables to solve $U_x 2U_t = U$ hence show that $U(x, 0) = 6e^{-3t}$

QUESTION THREE (20 MARKS)

a. Use special function to evaluate $\int_{0}^{1} x^{5} (1-x)^{6} dx$ (4mks)

(10mks)

- b. Suppose f(t) = 0 for t < 0 and that a > 0, show that $L\{f(t-a)\} = e^{as}F(s)$ (4mks)
- c. Show that $L\{\cos at\} = \frac{s}{s^2 + a^2}$ (5mks)
- c. Solve the initial value problem $y'-5y=-e^{-2t}$, y(0)=3 (7mks)

ESTION FOUR (20 MARKS)

a. Prove that
$$\Gamma(1) = \Gamma(2)$$

b. Prove that
$$B(m, n) = 2 \int_{0}^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$
 (3)

c. Express
$$f(x) = x^3 + 2x^2 - x - 3$$
 in terms of Legendre polynomials (6mks)

d. Evaluate
$$\int_{0}^{\infty} x^{6} e^{-2x} dx$$
 (8mks)

QUESTION FOUR (20 MARKS)

a. Give the definition of an ordinary point and state whether the following equations have an ordinary or singular point (8mks)

$$x^2y''+(x^2+x)y'-y=0$$

ii.
$$x^2y'' + (1+2x)y' = 0$$

b. Solve
$$x^2y'' + 5xy' + (3-x)y = 0$$
 using the method of Frobenius. (12mks)