

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS

COURSE CODE:

MAP 411

COURSE TITLE:

TOPOLOGY

DATE: 14/11/22

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(5 marks) What are the basic properties of open balls

Show that in a metric space X, a subset $Z \subset X$ is closed if and only if for every sequence p_1, p_2 , \in Z that converges to a point p \in X, we have p \in Z. (8marks)

c. Define the following

(2marks) Closed subset i.

(2marks) Cauchy sequence ii.

(1marks) Complete metric space 111.

d. Show that a function $f: X \to Y$ is continuous if and only if for all open sets $U \subset X$, the (12marks) preimage $f^{-1}(U) \subset X$ is open

QUESTION TWO (20 MARKS)

a. Define the following

(2marks) Boundary of a subset

i. (2marks) Interior of a subset ii.

b. Show that a function $f: X \to Y$ is continuous if and only if for all basis element $B \subset Y$ for the (4 marks) topology on Y, $f^{-1}(B) \subset X$ is open

c. Show that a function $f: X \to Y$ is continuous if for every point in X, there is an open set of X(6marks) on which f is a function

(6marks) d. Show that $\bar{A} = A \cup \{\text{limit points of A}\}\$

QUESTION THREE (20 MARKS)

a. Define the following

(1marks) Dense subset i. (3 marks)

Embedding ii. (2marks)

Hausdorff topology iii. (2marks)

Homeomorphism

Show that if X is Hausdorff, then every sequence converges to at most one limit.

c. Show that a map $f: Z \to \prod X_i$ is continuous if the component $f_i: Z \to X_i$ is continuous for all i. (6marks)

QUESTION FOUR (20 MARKS)

a. Define the following

(1marks) Topological space i.

(1marks) Discrete topology ii. (2marks)

Finer topology iii.

iv. Basis	(3marks)
What are the basic properties of topology	(3 marks)
Show that the topology generated by a basis B is indeed a topology	(10marks)
OUESTION FIVE (20 MADKS)	

QUESTION FIVE (20 MARKS)

	T (*	. 1	0 1	1 .
0	Detine	the	tol	OWING
a.	Define	LIIC	101	10 WILLS
				_

i.	Order topology	(4marks)
ii.	Bounded metric space	(1marks)
iii.	Subspace topology	(2mark)
iv.	Product topology	(2marks)

b. Show that T_A is indeed a topology on A. Further more if B is a basis for T_X then $\{B \cap A : B \in B\}$ is a basis for T_A (6marks)

c. Let B be a basis. Show that open sets of T are all unions of sets in B (5marks)