

KIBABII UNIVERSITY SUPPLEMENTARY/SPECIAL UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: SPC 313

COURSE TITLE: MATHEMATICAL PHYSICS I

DATE: 18/11/2022

TIME: 8:00AM-10:00AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any TWO of the remaining.

Time: 2 hours

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 MARKS)

- a) If A and B are irrotational, prove that $A \times B$ are solenoidal
- b) Find the angle between the surfaces $x_1 + y_2 + z_3 = 1$ and $z = x^2 + y^2 1$ at the point (1, +1, +1)
- c) Show that the divergence of an inverse square force is zero (4 marks) (3 marks)
- d) Find the volume V of the tetrahedron with vertices at the points A(1, 0, 2), B(3, -1, 4), C(1, 5, 2) and D(4, 4, 4) (4 marks)
- e) Given

$$A = \begin{bmatrix} 1 & 2-i \\ 2+i & -3 \end{bmatrix}$$

Show that the eigenvalues are real and that the eigenvectors for different eigenvalues are (4 marks)

f) What are the eigenvalues of the matrix

$$M = \begin{pmatrix} 1 & 0 & -i \\ 0 & 2 & 0 \\ i & 0 & -1 \end{pmatrix} ?$$

g) Calculate the scalar product of two vectors \mathbf{p} and \mathbf{q} defined by

$$p = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
 $q = 5\hat{i} + 2\hat{j} - 4\hat{k}$

and comment on the result

(3 marks)

(3 marks)

- h) Evaluate $\int_{c} \mathbf{A} \cdot d\mathbf{r}$ from the point P(0, 0, 0) to Q(1, 1, 1) along the curve $r = \hat{t}t + \hat{j}t^2 + \hat{k}r^3$ with x = t, $y = t^2$, $z = t^3$ where $A = y\hat{t} + xz\hat{j} + xyz\hat{k}$ (3 marks)
- i) Show that $\int_S A \cdot ds = \frac{12}{5}\pi R^2$, where S is a sphere of radius R and $A = \hat{i}x^3 + \hat{j}y^3 + \hat{k}z^3$ (3 marks)

QUESTION TWO (20 MARKS)

a) Verify Stoke's theorem for the vector field $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ over the closed contour C enclosing the plane surface S shown in Figure 1 below. AB is the arc of circle of radius 2 with its centre at the origin (10 marks)

Figure 1

b) Find the eigenvalues and normalized eigenvectors of the matrix

(E)

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 0 \\ 5 & 0 & 3 \end{pmatrix}$$

Are the eigenvectors orthogonal? Comment on this.

(10 marks)

QUESTION THREE (20 MARKS)

a) Below are given sets of matrices:

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, D = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

What is the effect when A, B, C and D act separately on the position vector $\begin{pmatrix} x \\ y \end{pmatrix}$

(10 marks)

b) The figure 2 below shows a tetrahedron of vertices A(1, 0, 2), B(3, -1, 4), C(1, 5, 2) and D(4, 4, 4)

Figure 2

(i) Find the volume V of the tetrahedron

(5 marks)

(ii) Find the height from the point D to the base ABC

(5 marks)

QUESTION FOUR (20 MARKS)

a) Consider a cube with uniform density ρ and side a. The cube is placed such that its edges lie along x, y and z as shown in Figure 3.

Figure 3

Determine the moment of inertia about an edge of the cube (5 marks)

b) Use divergence theorem to obtain the flux of a vector field $\mathbf{A} = 3x\mathbf{i} - y\mathbf{j} + 2x\mathbf{k}$ over a cube of side $2\mathbf{a}$. The vertices of the cube are at $(\pm \mathbf{a}, \pm \mathbf{a}, \pm \mathbf{a})$ as shown in Figure 4. (5 marks)

Figure 4

- c) Use the divergence theorem to evaluate the flux of the vector field $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$ (5 marks)
- d) Let $p, q, r, s \in \mathbb{R}$ and consider a 2 x 2 Hermitian matrix

$$A = \begin{bmatrix} p & q+ri \\ q-ri & s \end{bmatrix}$$

Compute the characteristic polynomial of A and show directly that the eigenvalues must be real numbers. (5 marks)

QUESTION FIVE (20 MARKS)

a) Figure 5 shows a parallelepiped of sides a and b

Figure 5

Given that $\mathbf{a} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\mathbf{b} = 4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$, evaluate the area of the parallelepiped. (6 marks)

b) Consider the motion of a particle along a curve defined by the following parametric equations:

$$x = 2t^2 + 3$$
 $y = t^2$ $z = 2t$

where t= time.

If the position vector \mathbf{r} of the particle at any time \mathbf{t} is expressed as $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$

(i) Determine the speed of the particle (5 marks)

(ii) Determine the acceleration of the particle

(3 marks)

c) A particle of mass \mathbf{m} with position vector \mathbf{r} relative to some origin O, experiences a force \mathbf{F} which produces a torgue or turning effect $\mathbf{T} = \mathbf{r} \times \mathbf{F}$ about the origin O. The angular momentum of the particle about the origin O is given by $\mathbf{L} = \mathbf{r} \times \mathbf{m} \mathbf{v}$, where \mathbf{v} is the particle's velocity. Show that the rate of change of angular momentum is equal to the applied torgue i.e.

$$\frac{d\mathbf{L}}{dt} = \mathbf{T}$$

(6 marks)