

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAA 423/MAT426

COURSE TITLE: FOURIER SERIES

DATE: 23/11/2022

TIME: 1-1:00 AM - 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

a) Find the limit
$$\lim_{x\to 0} \left\{ \frac{x^{14} - 11 + \frac{1}{2}x^8}{x^6} \right\}$$
 (5 marks)

b) Determine whether the given functions are even, odd or neither

i)
$$f(x) = \cot\left(\frac{n\pi x}{L}\right)$$
 on $-L \le x \le L$
ii) $f(x) = x^2 - 1 + e^{2x}$ on $-L \le x \le L$ (9 marks)

c) Compute the Maclaurin series as far as x^6 term for the following functions

i)
$$\frac{\sin(x)}{x}$$
ii)
$$\frac{1-\cos(x)}{x^2}$$
 (8 marks)

d) The Fourier series of the function f defined by $f(x) = x^2$ on the interval $[-\pi, \pi]$ is known to be convergent.

What do you understand by

- i) period of f
- ii) Fourier coefficients of expansion

Give a sketch graph of two periodic extensions of f (8 marks)

QUESTION 2 (20 MARKS)

- a) Show that the equation $u_t = 8u_{xx} + u_x$ is parabolic (7 marks)
- b) Determine a transformation which makes the equation; $u_t = \alpha^2 u_{xx}$ variable separable.

c) Solve the heat equation $u_t = \alpha^2 u_{xx}$, 0 < x < 1, t > 0 with the Dirichlet boundary conditions u(t,0) = u(t,1) = 10, t > 0 and initial conditions u(0,x) = g(x) = x, $0 \le x \le 1$ applying variable separation (7 marks)

QUESTION 3 (20 MARKS)

Find the Fourier series of the function defined in pieces (piecewise constant function) by

$$f(x) = \begin{cases} 8 & 0 < x < 2 \\ -8 & 0 < x < 4 \end{cases}$$

where f is periodic with period 4. What does the series converge to at

- i) x = 0.42
- ii) x=3

(20 marks)

QUESTION.4 [20 marks]

- (a) Given the voltage v = f(t) volts, and i = F(t) amperes, such that $v = 12.0 + 5.2\cos wt + 2.4\cos 2wt + 0.9\cos 3wt + ... + 2.7\sin wt + 1.8\sin 2wt + 0.2\sin 3wt + ...$ $i = 8.50 + 4.1\cos wt + 2.0\cos 2wt + 0.6\cos 3wt + ... + 3.6\sin wt + 1.2\sin 2wt + 0.3\sin 3wt + ...$ find the average value of power vi in watts, over one cycle. [9 marks]
- (b) For the function $f(x) = \begin{cases} 20x & -5 < x < 5 \\ f(x+10) & otherwise \end{cases}$
- (i) sketch graph of f(x) over the interval -20 < x < 20
- (ii) state period of f(x)
- (iii) obtain Fourier series for f(x)

[11 marks]

QUESTION 5 [20 marks]

One cycle of a periodic waveform y = f(x) of period 2π is defined by the below data.

7.50												
x^0	0	30	60	90	120	150	180	210	240	270	300	330
y(x)	150	200	230	240	200	80	30	40	90	120	100	110

Determine the approximate Fourier series for y = f(x) up to and including the third harmonic. [20 marks]