

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE: STA 325

COURSE TITLE: MULTIVARIATE PROBABILITY

DISTRIBUTION

DATE: 23/11/2022

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) Define a random vector

(2mks)

b) Let three random variables have the joint probability density function (pdf) as follows:

$$f(\chi_1, \chi_2, \chi_3) = \begin{cases} 8\chi_1 \chi_2 \chi_3; & 0 < \chi_1 < 1, 0 < \chi_2 < 1, 0 < \chi_3 < 1 \\ 0, & otherwise \end{cases}$$

Compute the expected value $5X_1X_2^3 + 3x_2X_3^4$ of (6mks)

c) Let x be a trivariate random vector such that

 $E(\underline{x}) = 0$ and $var(\underline{x}) = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$. Find the expected value of the quadratic form

$$P = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$$
 (8mks)

(a) Let x be a random vector having the covariance matrix

 $\Sigma = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix}$

- (i) Obtain the population correlation matrix (ρ) and $V^{\frac{1}{2}}$ (8mks)
- (ii) Multiply your matrices to check the relation $V^{\frac{1}{2}}\rho V^{\frac{1}{2}}$ (6mks)

QUESTION TWO [20 MARKS]

a) Let random variables X, Y and Z have the joint pdf given by

 $f(x, y, z) = \begin{cases} \frac{12\chi^2 + 12yz}{7}; & 0 < x < 1, 0 < y < 1, 0 < z < 1 \\ 0, & otherwise \end{cases}$

- i) Use the joint pdf to find $f(z \mid x, y)$. (3mks)
- ii) What is the $E(Z \setminus x = \frac{1}{2}, y = \frac{1}{2})$? (5mks)
- iii) Find $Var(Z \mid x = \frac{1}{2}, y = \frac{1}{2})$. (5mks)
- b) Show that the sample mean is an unbiased estimator of $\underline{\mu}$ and that the sample variance is biased estimator of matrix Σ (7mks)

QUESTION THREE [20 MARKS]

(a) In an experiment involving two correlated variables, the following sample statistics were

obtained: $\overline{X} = \begin{bmatrix} 10.00 \\ 10.00 \end{bmatrix}$ $S = \begin{bmatrix} 0.7986 & 0.6793 \\ 0.6793 & 0.7343 \end{bmatrix}$. Determine

(i) Principal components

(8mks)

(ii) Variance of each principal component

(3mks)

(iii) Percentage of variance explained by each principal component

(3mks)

(b) Let x be a p-variate random vector, A be a non-zero matrix constants and \underline{b} a $p \times 1$ vector of constants, show that

$$var(A\underline{x} + \underline{b}) = A\Sigma A' \tag{6mks}$$

QUESTION FOUR [20 MARKS]

(i)

a) Let $\underline{x} = [5,1,3]$ and y = [-1,3,1]. Find

The length of \underline{x}

(2mk)

(ii) The angle between \underline{x} and y

(3mks)

(iii) The length of the projection of \underline{x} on y (2mk)

b) Consider the following n = 3 observations on p = 2 variables

Variable 1: $x_{11} = 2$, $x_{21} = 3$, $x_{31} = 4$

Variable 1: $x_{12} = 1$, $x_{22} = 2$, $x_{32} = 4$

- Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances S_{11} and S_{22} (i)
- Compute the sample covariance S_{12} and the sample correlation coefficient r_{12} and (ii) (4mks) interpret these quantities
- Display the sample mean array \bar{x} , the sample correlation array R and the sample (iii) (3mks) variance-covariance S_n

QUESTION FIVE [20 MARKS]

d) Define the following terms

Random vector (i)

(2mks)

Positive definite matrix (ii)

(2mks)

- e) Assume $\underline{x}'=(x_1,x_2,x_3)$ is normally distributed with mean vector $\underline{\mu}=(1,-1,2)$ and variance $\max \Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$ Find the distribution of $3x_1-2x_2+x_3$ (8mks)
- f) Find the maximum likelihood estimators of the mean vector $\underline{\mu}$ and covariance matrix Σ based on the data matrix

$$x = \begin{bmatrix} 5 & 1 \\ -2 & 3 \\ 3 & 4 \end{bmatrix} \tag{8mks}$$