

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

(RENEWABLE ENERGY)

COURSE CODE:

MAT 351

COURSE TITLE:

COURSE TITLE: ENGINEERING MATHEMATICS III

DATE:

18/11/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30marks)

- (a). Define the following terms
 - (i). Laplace transform of a function f(t) (2 Mark)
 - (ii). Step function a function (1 Mark)
 - (iii). Laplace operator (2 Mark)
 - (iv). Periodic function (1 Mark)
- b). Find the div(curl v) given that $v = x^2i 2xy^2j + 2zk$. (5 Marks)
- c). Find the inverse Laplace transform of $\frac{4s^2+12}{s(s^2+4)}$ (5 Marks)
- d). Find the directional derivative of $\phi = x^2y + zx$ at (1,1,1) in the direction of u = -i + 2j + 2k. (5 Marks)
- e). (i). Show that the following limit does not exists
 - $\lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y^2}$ (4 Marks)
- f). Find the Fourier sine series for $f(x) = x^2$ on $0 \le x \le L$ (5 Marks)

QUESTION TWO (20 MKS)

- a). When are two functions said to be orthogonal? (1 Mark)
- b). Find the Fourier series for $f(x) = \begin{cases} L, & \text{if } 0 \le x < \frac{L}{2} \\ x L, & \text{if } \frac{L}{2} \le x \le L \end{cases}$ (10 Marks)
- c). Given that $f(x, y) = xy + ye^x$ find f_{xx} and f_{yy} . (5 Marks)
- d). Express $\frac{1}{2} \oint_C 4x dy 3y dx$ in the form $\iint_R f(x, y) dx dy$. (4 Marks)

QUESTION THREE (20 MKS)

- a). Find the Taylor 4th polynomial for $f(x) = \cos 2x$ at $x = \pi$. (6 Marks)
- b). Find the Laplace transform of $f(t) = \frac{1}{4}(e^{2t} + e^{-2t})$. (4 Marks)
- c). Find the Fourier cosine series of $f(x) = \frac{L}{2}$ on $-L \le x \le L$. (4 Marks)

(3)

d). Using cylindrical coordinates evaluate $\iint_S z^2(x^2 + y^2) dxdy$ where S is the surface bounded by the circle $x^2 + y^2 = 4$ on z = 4. (6 Marks)

QUESTION FOUR (20 MKS)

a). Find the Curl and Gradient of
$$r = z \cos y \, i + \sin xy \, j - zk$$
 at (1,0,1) (6 Marks)

b). Evaluate
$$\int_0^1 \int_0^x \int_0^y (4z^3x - y^3x) dz \, dy \, dx$$
 (7 Marks)

c). Find the Laplace transform of
$$f(t) = \sin at$$
 (7 Marks)

QUESTION FIVE (20 MKS)

a). Using Laplace transform, solve the initial value problem for t > 0

$$y''(t) - 10y'(t) + 9y(t) = 5t; \quad y(0) = -1, \quad y'(0) = 2$$
 (14 Marks)

b). Find the total work done in moving a particle in a force field given by $\mathbf{F} = 3xy\mathbf{i} - 5z\mathbf{j} +$

$$10xk$$
 along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from $t = 1$ to $t = 2$. (6 Marks)