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INTRODUCTION 
 We give essential concepts involving definitions 
and other useful notions used in the sequel. Section 1.1 
introduces the concept of a Banach linear operator and 
some of its basic properties. In section 1.2, we present the 
definition and properties of a locally convex topological 
vector space in terms of convex balanced neighborhoods of 
0 as discussed by Jeremy J. B. and Ambar N. S. (2009). 
Finally, in section 1.3 we illustrate the notion of a nuclear 
space structure which was first introduced by Grothedieck 
(1955) and discussed by Taylor J. L. (1995) as a class of 
locally convex topological vector space (𝑙. 𝑐. 𝑡. 𝑣. 𝑠).   
1.1   A Banach linear operator 
Let 𝑇 ∶  𝑋 →  𝑌 be a linear operator between Banach 
spaces. Let 𝑈𝑋,𝑈𝑌 be the closed unit balls of 𝑋,𝑌, 
respectively. Note that closed unit balls serve 
simultaneously the basic model for open sets and bounded 
sets in Banach spaces. Some properties of the linear 
operator 𝑇 are: 
(1) 𝑇 is bounded (i.e., 𝑇𝑈𝑋 is a bounded subset of 𝑋) 
⇔  𝑇 is continuous (i.e., 𝑇−1𝑈𝑋 is a 0-neighborhood of 𝑋 in 
the norm topology) 
⇔  𝑇 is sequentially bounded ( i.e., 𝑇 sends bounded 
sequences to bounded sequences); 
(2) 𝑇 is of finite rank (i.e., 𝑇𝑈𝑋 spans a finite dimensional 
subspace of 𝑌) 
⇔  𝑇 is weak-norm continuous (i.e., 𝑇−1𝑈𝑋 is a 0-
neighborhood of 𝑋 in the weak topology) 
⇔ 𝑇 sends bounded sequences to sequences spanning 
finite dimensional subspaces of 𝐹; 
(3) 𝑇 is compact (i.e., 𝑇𝑈𝑋 is totally bounded in 𝑌) 

⇔  𝑇 is continuous in the topology of uniform convergence 
on norm compact subsets of 𝑋′ (i.e., 𝑇−1𝑈𝑌 ⊇ 𝐾0, the polar 
of a norm compact subset 𝐾 of the dual space 𝑋′ 𝑜𝑓 𝑋) 
⇔  𝑇 is sequentially compact (i.e., 𝑇 sends bounded 
sequences to sequences with norm convergent 
subsequences); and 
(4) 𝑇 is weakly compact (i.e., 𝑇𝑈𝑋  is relatively weakly 
compact in 𝑌) 
⇔  𝑇 is continuous in the topology of uniform convergence 
on weakly compact subsets of 𝑋′ (i.e., 𝑇−1𝑈𝑌 ⊇ 𝐾0, the 
polar of a weakly compact subset 𝐾 of 𝑋′) 
⇔ 𝑇 is sequentially weakly compact (i.e., 𝑇 sends bounded 
sequences to sequences with weakly convergent 
subsequences). 
1.2 Topological Vector Spaces 
A topological vector space shall mean a real or complex 
vector space, equipped with a Hausdorff topology for which 
the operations of addition and multiplication are 
continuous. A general open set in such a space is the union 
of translates of neighborhoods of 0. A topological vector 
space 𝑋 is said to be locally convex if every neighborhood of 
0 contains a neighborhood of 0 which is a convex set. By a 
locally convex space we shall mean a locally convex 
topological vector space. Remarkable, a locally convex space 
can be understood in terms of normed linear spaces, as we 
explain below. 
If 𝑈 is a convex neighborhood of 0, inside it there is a 
convex neighborhood of 0 which is also balanced, i.e. 
mapped into itself under multiplications by scalars of 
magnitude ≤ 1, Rudin W. [1987, Theorem 1.14(b)]. 
For a convex balanced neighborhood of 0, the function 
          𝜌𝑈 ∶  𝑋 →  [0,∞): 𝑣 ↦  𝜌𝑈(𝑣) 
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=  𝑖𝑛𝑓{𝑡 >  0 ∶  𝑣 ∈ 𝑡𝑈}          (1.2.1) 
is a semi-norm in the sense that  
          𝜌𝑈(𝑎 + 𝑏) ≤  𝜌𝑈(𝑎)+𝜌𝑈(𝑏),      
 𝜌𝑈(𝑡𝑎) = |𝑡|𝜌𝑈(𝑎)                              (1.2.2)    
for all 𝑎, 𝑏 ∈ 𝑋  and scalars 𝑡.       
The function  𝜌𝑈 is uniformly continuous, because 
|𝜌𝑈(𝑎) − 𝜌𝑈(𝑏)| ≤  𝜌𝑈(𝑎 − 𝑏),  
which is less than any given positive 𝜖 if  𝑎 −  𝑏 ∈ 𝜖𝑈. 
If the convex balanced neighborhood 𝑈 of 0 is `finite' in 
every direction, i.e. 0 is the only vector for which all 
multiples lie inside 𝑈, then  𝜌𝑈 is a norm, i.e. 𝜌𝑈 is 0 only on 
the zero vector. Indeed, in this case the topology arises 
from  𝜌𝑈 in the sense that every open set is the union of 
translates of scalar multiples of the unit ball  
𝑈 =  {𝑣 ∈  𝑋 ∶    𝜌𝑈(𝑣) <  1}.  
On the other hand, if 𝑈 is `infinite in some direction', i.e. it 
contains all multiples of some non-zero vector, then  𝜌𝑈 is 0 
on any vector in that direction. 
A sequence (𝑥𝑛) 𝑛 ≥ 1 in a topological vector space 𝑋 is 
said to be Cauchy with respect to a topology 𝜏 if the 
differences 𝑥𝑛 − 𝑥𝑚  are all eventually in any given 𝜏 − 
neighborhood of 0 for large 𝑛 and 𝑚. Any convergent 
sequence is automatically Cauchy. A topological vector 
space is said to be complete if every Cauchy sequence 
converges. 
If 𝑈 and 𝑉 are convex balanced neighborhoods of 0 and 
𝑈 ⊂ 𝑉 then the identity map 𝑋 →  𝑋 induces a natural 
surjection 𝑝𝑉𝑈 on the quotients: it is the map 
  𝑝𝑉𝑈 ∶ 𝑋𝑈  → 𝑋𝑉 ∶ 𝑝𝑈(𝑥) ↦ 𝑝𝑉(𝑥)                (1.2.3) 
for all 𝑥 ∈ 𝑋. This takes a picture 𝑝𝑈(𝑥) of 𝑥 and produces a 
coarser picture 𝑝𝑉(𝑥). Note that 𝑝𝑉𝑈 is a linear contraction 
mapping. 
If a locally convex space 𝑋 is metrizable, then by Rudin W. 
(1987, Theorem 1.24) its topology is induced by a 
translation-invariant metric 𝑑 for which open balls are 
convex, and so every neighborhood of 0 contains a locally 
convex neighborhood 𝑊 (an open ball, for instance) for 
which 𝜌𝑊 is a norm (of course, the topology 𝜏𝑊 induced by 
𝜌𝑊 is, in general, smaller than 𝜏);  if 𝑉 is a convex balanced 
neighborhood of 0, with  𝑉 ⊂ 𝑊, then 𝜌𝑉 is also a norm. 
Theorem 1.2.1 (Jeremy J. B. and Ambar N. S., (2009).  
Let 𝑋 be a complete, metrizable, locally convex space. Let ℬ 
be a set of all convex, balanced neighborhoods of 0 such that 
every neighborhood of 0 contains as subset some 
neighborhood in ℬ, i.e. suppose ℬ is a local base at 0, 
consisting of convex balanced sets, for the topology of 𝑋. 
Suppose now that associated to each 𝑉𝜖 ℬ an element 
𝑥𝑉 ∈ 𝑋𝑉 = 𝑋/𝜌−1𝑉(0)   such that 
 𝑝𝑊𝑉(𝑥𝑉) = 𝑥𝑊     (1.2.4) 
for every 𝑊𝜖 ℬ for which  𝑊 ⊃ 𝑉. Then there exists a unique 
𝑥𝜖 𝑋 such that 
 𝑝𝑊(𝑋) = 𝑥𝑊 for every 𝑊𝜖 ℬ. Moreover, for such 𝑊, the 
quotient 𝑋𝑉 is a Banach space. 
1.3 The nuclear space structure 
Consider a real complex topological vector space 𝐻 
equipped with the following structure:- There is a sequence 
of inner-products  〈. , . 〉𝑃, for 𝑝 ∈ {0,1,2,3, … }, on ℋ such 
that 
∥. ∥0 ≤ ∥. ∥1 ≤ ⋯     (1.3.1) 
Denote 𝐻0, the completion of ℋ  in the norm ∥. ∥0 and 
inside this Hilbert space the completion of ℋ with respect 
to ∥. ∥𝑃 be a dense subspace denoted 𝐻𝑃. We assume that 𝐻0 
is separable, and that ℋ  is the intersection of all the spaces 
𝐻𝑃. Thus, 

ℋ =
∞
⋂ 

𝑝 = 0
𝐻𝑃 ⊂ ⋯ ⊂ 𝐻2 ⊂ 𝐻1 ⊂ 𝐻0.    (1.3.2) 

Furthermore, we assume that each inclusion 𝐻𝑃+1 → 𝐻𝑃 is 
a Hilbert Schmidt operator, i.e. there is an orthonormal 
basis 𝑣1, 𝑣2,𝑣3, … in 𝐻𝑃+1 for which 
∑ ∥ 𝑣𝑛 ∥2𝑝 < ∞.∞
𝑛=1              (1.3.3) 

The topology on ℋ is the projective limit topology from the 
inclusions ℋ → 𝐻𝑃, i.e. it is induced by the norms ∥. ∥𝑃 . 
Thus an open set in this topology is the union of 
∥. ∥𝑃-balls with 𝑝 running over {0, 1, 2, 3, … }. All these 
assumptions make ℋ a nuclear space (Jeremy J. Becnel and 
Ambar N. Sengupta, 2009). 
 In a subtle way, we can define a nuclear space as a locally 
convex space such that for any seminorm p we can find a 
larger seminorm 𝑝 + 1 so that the natural map from 
𝐻𝑃+1 → 𝐻𝑃 is nuclear. Informally, this means that whenever 
we are given the unit ball of some seminorm, we can find a 
"much smaller" unit ball of another seminorm inside it, or 
that any neighborhood of 0 contains a "much smaller" 
neighborhood. 
Remark 1.3.1 (Taylor J. L., 1995) 
An infinite-dimensional topological vector space is never 
locally compact, but a nuclear space is an excellent substitute 
in the infinite-dimensional case: the definition ensures, in 
particular, that an open ball in  𝐻𝑃+1 has compact closure in 
𝐻𝑃. 
Note that if  𝜏𝑃 is the topology on ℋ given by ∥. ∥𝑃 , then by 
(1.3.1), the identity map 
 (ℋ, 𝜏𝑃+1) → (ℋ, 𝜏𝑃)  
is continuous, for  𝑝 ∈ {0, 1, 2, 3, … } and so 
  𝜏0 ⊂ 𝜏1 ⊂ ⋯    (1.3.4) 
The inclusions here are strict if ℋ is infinite-dimensional, 
because of the Hilbert-Schmidt assumption made above. 
Now following the concept of Nuclear spaces introduced by 
Grothedieck A., (1955) and discussed by Taylor J. L., (1995) 
as a class of locally convex topological vector space 
(𝑙. 𝑐. 𝑡. 𝑣. 𝑠). Let X and Y be 𝑙. 𝑐. 𝑠. ’𝑠. The space 𝑋∗ ⊗ 𝑌 is 
linearly isomorphic to a subspace of 𝐿(𝑋,𝑌 ), the space of 
continuous linear maps from 𝑋 𝑡𝑜 𝑌 - as follows: 
 if    𝑢 =  ∑𝑓𝑖  ⊗𝑦𝑖  ∈  𝑌 ⊗𝑋∗, 
we assign to 𝑢 the linear map ℓ𝑢  ∈  𝐿(𝑋,𝑌 ) defined by 
 ℓ𝑢(𝑥) = ∑𝑓𝑖 (𝑥)𝑦𝑖 
If the 𝑦𝑖 are chosen to be linearly independent (as they 
may), then the only way this sum 
can be zero is if 𝑓𝑖 (𝑥) = 0 for every 𝑖. If this happens for 
every 𝑥, then the 𝑓𝑖  are all zero and so is 𝑢. Thus, the map 
𝑢 →  ℓ𝑢 is injective as well as (obviously) linear. Thus, we 
may identify 𝑋∗ ⊗ 𝑌 with a linear subspace of 𝐿(𝑋,𝑌 ). In 
fact, it is obviously the linear subspace consisting of finite 
rank continuous linear maps from X to Y. 
Now suppose that 𝑋 and 𝑌 are Banach spaces. Then 𝑋∗ is 
also a Banach space, as is 
the completed projective tensor product  𝑋∗ ⊗� 𝑌. The map 
𝑢 →  ℓ𝑢 ∶  𝑋∗ ⊗ 𝑌 →  𝐿(𝑋,𝑌 )   
is norm decreasing if 𝐿(𝑋,𝑌 ) is given the operator norm 
and 𝑋∗ ⊗ 𝑌 the tensor product norm. In fact, 
||ℓ𝑢||  =  𝑠𝑢𝑝{||ℓ𝑢(𝑥)|| ∶  ||𝑥||  ≤  1}  ≤
∑ ||𝑓𝑖|| ||𝑦𝑖||||𝑥||  𝑖𝑓 𝑢 = ∑  𝑓𝑖 ⊗  𝑦𝑖  
Thus 
||ℓ𝑢||  ≤  𝑖𝑛𝑓{∑ ||𝑓𝑖|| ||𝑦𝑖|| ∶  𝑢 = ∑  𝑓𝑖 ⊗  𝑦𝑖}  =  ||𝑢||  
It follows that 𝑢 →  ℓ𝑢 extends to a norm decreasing linear 
map 𝑋∗ ⊗� 𝑌 →  𝐿(𝑋,𝑌 ). 
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 Definition 1.3.2. If 𝑋 and 𝑌 are Banach spaces then a 
nuclear map from 𝑋 𝑡𝑜 𝑌 is an 
element of 𝐿(𝑋,𝑌 ) of the form ℓ𝑢 for some 𝑢 ∈  𝑋∗ ⊗� 𝑌 .  If 
𝑋 and 𝑌 are arbitrary 𝑙. 𝑐. 𝑠. ’𝑠 then a nuclear map from 
𝑋 𝑡𝑜 𝑌 is a map 𝜑 ∈   𝐿(𝑋,𝑌 ) which factors as 
 𝜇 ∘  𝜓 ∘  𝜈  where 𝐸 𝑎𝑛𝑑 𝐹 are Banach spaces, 𝜈 ∈
 𝐿(𝑋,𝐸), 𝜇 ∈  𝐿(𝐹,𝑌 ), and 𝜓 ∶  𝐸 →  𝐹 is nuclear. 
Proposition 1.3.3 (Taylor J. L., 1995). If X and Y are 
𝑙. 𝑐. 𝑠. ’𝑠 then a linear map 𝜑 ∈  𝐿(𝑋,𝑌 ) is nuclear if and 
only if it has the form 
𝜑(𝑥)  = ∑ 𝜆𝑛 𝑓𝑛(𝑥)𝑦𝑛∞

𝑛=1   
where 𝑓𝑛 is a sequence in 𝑋∗  which converges uniformly to 
0 on some 0-neighborhood 𝑉 ⊂  𝑋, {𝑦𝑛} is a sequence 
which converges to 0 in the space 𝑌𝐵 for some balanced, 
convex, bounded subset 𝐵 ⊂  𝑌 for which 𝑌𝐵 is complete 
and ∑ |𝜆𝑛|  <  ∞. 
Definition 1.3.4. If 𝑋 𝑎𝑛𝑑 𝑌 are 𝑙. 𝑐. 𝑠. ’𝑠 and 𝜑 ∈  𝐿(𝑋,𝑌 ), 
then 𝜑 is called compact if there exist a 0-neighborhood 
𝑈 𝑖𝑛 𝑋 such that 𝜑(𝑈) has compact closure in 𝑌. 
Proposition 1.3.5 (Taylor J. L., 1995).  Every nuclear map 
between 𝑙. 𝑐. 𝑠. ’𝑠 is compact. 
Note that every finite rank operator is nuclear and, hence, 
compact. 
The following proposition is obvious from the definition of 
nuclear map. 
Proposition 1.3.6 (Taylor J. L., 1995). The composition of 
a nuclear map with a continuous linear map (on either 
side) is nuclear. 
Definition 1.3.7. A nuclear space is an 𝑙. 𝑐. 𝑠.𝑋 with a basis 
𝜐 of convex, balanced 
0-nieghborhoods such that the map 𝜑𝑈 ∶  𝑋 → 𝑋𝑈  is a 
nuclear map for each 𝑈 ∈  𝜐. 
Proposition 1.3.8. (Taylor J. L., 1995). For an 𝑙. 𝑐. 𝑠.  𝑋  
the following statements are equivalent: 
(i) 𝑋 is a nuclear space; 
(ii) for every convex, balanced 0-neighborhood 𝑈 there is 

a convex, balanced 0-neighborhood 𝑉 ⊂  𝑈 such that 
the map 𝜑𝑈𝑉 ∶  𝑋𝑉  →  𝑋𝑈 is nuclear; 

(iii) every continuous linear map from 𝑋 to a Banach space 
is nuclear. 

(iv) the map 𝜑𝑈 ∶  𝑋 → 𝑋𝑈  is nuclear for every convex, 
balanced 0-neighborhood 𝑈. 

CORRESPONDENCE BETWEEN BANACH SPACE 
OPERATOR IDEALS AND NUCLEAR IDEALS THROUGH 
TOPOLOGICAL VECTOR SPACES. 
 We recall that a closed subspace 𝐹 of a Banach 
space 𝐸 is called an ideal in 𝐸 if 𝐹⊥, the annihilator of 𝐹  in 
𝐹∗, is the kernel of a norm one projection 𝑃 on 𝐸∗. In this 
case P is called the ideal projection. The notion of an ideal in 
a Banach space was introduced by Godefroy, et al.  (1993). 
 Chong Man Cho and Eun Joo Lee, (2004), 
illustrated that an ideal is closely linked with a Hahn-
Banach extension operator in the sense that for a closed 
subspace 𝐹 of a Banach space 𝐸 a linear operator  
�:𝐹∗ → 𝐸∗  is called a Hahn-Banach extension operator if  
�(𝑒∗)  is a norm preserving extension of 𝑒∗ for all 𝑒∗ ∈ 𝐸∗.  
It is well known that there exists a Hahn-Banach extension 
operator �:𝐹∗ → 𝐸∗  if and only if 𝐹 is an ideal in 𝐸. In this 
case, the Hahn-Banach extension operator � and the 
corresponding ideal projection 𝑃:𝐸∗ → 𝐸∗ are related by 
𝑃𝑥∗ = �(𝑥∗\𝐹), where 𝑥∗\𝐹   is the restriction of 𝑥∗ to 𝐹. 
 In this section through illustrated properties of 
Banach operator ideals as discussed by Lima, A and Oja, E., 
(2004), we show that there is a close correspondence 
between the notions of Banach operator ideals and the 

structure of nuclear spaces in the sense of topological 
vector spaces. 
 Let ,𝑋,𝑌,𝑍 𝑎𝑛𝑑 𝑊 be Banach spaces. We denote by 
𝐿(𝑋,𝑌) the Banach space of bounded linear operators from 
𝑋 𝑡𝑜 𝑌,  and by 𝐹(𝑋,𝑌), 𝐹(𝑋,𝑌)����������, 𝐾(𝑋,𝑌) its subspaces of 
finite rank operators, approximable operators (i.e. norm 
limits of finite rank operators), and compact operators 
respectively. We illustrate these subspaces in terms of 
normed linear spaces as follows. By property (1) of section 
1.1, ∀ 𝑇 ∈ 𝐿(𝑋,𝑌) implies that 𝑇 is continuous and 
sequentially bounded. Property (2) of section 1.1 ensures 
that ∀ 𝑇 ∈ 𝐹(𝑋,𝑌) is a weak-norm continuous and sends 
bounded sequences to sequences spanning finite 
dimensional subspaces of 𝐹(𝑋,𝑌). Clearly, by property 
1.3.5, every 𝑇 ∈ 𝐹(𝑋,𝑌) is  nuclear and hence compact. 
Supposing the subspace 𝐹(𝑋,𝑌) is of finite rank operators, 
its closure shall imply compactness property. Also since 
𝑎𝑙𝑙 𝑇 ∈ 𝐹(𝑋,𝑌) are weak norm continuous operators, 
properties (3) and (4) of section 1.1 therefore sets the 
space 𝐹(𝑋,𝑌)���������� to be weakly compact, in particular it is 
sequentially weakly compact. Finally, 𝐾(𝑋,𝑌) being a 
subspace of compact operators implies that it has a finite 
dimension and thus is a complete space. Letting this space 
be a balanced convex neighborhood of 0, we then can 
define a uniformly continuous norm on it.  In the case 𝑋 is 
metrizable, it follows by theorem 1.2.1 that there exists a 
unique 𝑥 ∈ 𝑋 such that 𝜌𝑊(𝑥) = 𝑥𝑊 for every 𝑊 a subset of 
all convex, balanced neighborhood of 0. By definition 1.3.7, 
the space X is a nuclear space with a basis 𝑊 of convex, 
balanced 0- neighborhoods such that the map 𝜓𝑊:𝑋 → 𝑋𝑊 
is a nuclear map for all 𝑊. 
 A First basic result, Proposition 2.1, is the property 
of an ideal illustrated as per the concepts of Hahn-Banach 
extension operator and tensor product spaces in relation to 
the nuclear space structure through topological vector 
spaces. In proposition 2.3 we obtain an extended version of 
the results in Proposition 2.1 about the locally convex 
space 𝑋 being an ideal in a Banach space 𝑌 whenever  
𝐾(𝑍,𝑌) is an ideal in 𝐾(𝑍,𝑌) for some convex, balanced 0- 
neighborhood space 𝑍. In Proposition 2.4 we show that the 
converse is true whenever 𝐾(𝑍,𝑋) is an ideal in 𝐾(𝑍,𝑋∗∗). 
Finally, in Theorem 2.5 we conclude that the question 
about being an ideal in separable Banach spaces is 
analogous to nuclear space ideals in the topological vector 
space sense. 
Proposition 2.1.  Let 𝑋 be an ideal in 𝑌 and let 𝑍 be an ideal 
in 𝑊. Then 
𝑋 ⊗ 𝑍 is an ideal in  𝑌 ⊗𝑊. 
Proof.   We shall suppose that the spaces 𝑋,𝑌,𝑍 𝑎𝑛𝑑 𝑊 are 
locally convex. For 𝑋 an ideal in 𝑌 and 𝑍 an ideal in 𝑊, 
implies that there exists 0-neighbourhoods 𝑈 and 𝑉 in 𝑋 
and 𝑍 respectively such that the mappings 𝜓(𝑈)𝑎𝑛𝑑 𝜙(𝑉) 
have compact closures in  𝑌 and 𝑊. In this case both 
𝜓(𝑈):𝑋 → 𝑌 and 𝜙(𝑉):𝑍 → 𝑊  are nuclear maps 
equivalent to the mappings 𝜓: 𝑋∗ → 𝑌∗𝑎𝑛𝑑 𝜙: 𝑍∗ → 𝑊∗ be 
Hahn-Banach extension operators. 
Considering the completed projective tensor products 
 (𝑋⊗� 𝑍)∗   =  𝐼(𝑋,𝑍∗) and (𝑌 ⊗�𝑊)∗  =  𝐼(𝑌,𝑊∗), these are 
linearly isomorphic to subspaces 𝐿(𝑋,𝑍) and 𝐿(𝑌,𝑊) with 
the maps 
  𝑢 → ℓ𝑢: (𝑋 ⊗� 𝑍)∗ → 𝐿(𝑋,𝑍) and      
 𝑣 → ℓ𝑣: (𝑌 ⊗�𝑊)∗ → 𝐿(𝑌,𝑊)  
being norm one decreasing. 
 Since 𝜓∗𝑥 =  𝑥, 𝑥 𝜖 𝑋, and �∗𝑧 =  𝑧, 𝑧 𝜖 𝑍, the 
map Φ: 𝐼(𝑋,𝑍∗)  → 𝐼(𝑌,𝑊∗) which can be expressed as a 
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composition of a nuclear map with a continuous linear map 
𝑇 defined by Φ(𝑇)  = 𝜓 ∘ 𝑄 ∘ 𝑇∗∗ ∘ �∗\𝑌 is nuclear by 
proposition 1.3.6 and is clearly a Hahn-Banach extension 
operator thus  𝑋⊗ 𝑍 is an ideal in  𝑌 ⊗𝑊.                                                                                                    
Corollary 2.2. Let 𝑋 be a locally convex space and 𝑌 a 
Banach space. The following 
statements are equivalent. 
(i) 𝑋 is an ideal in 𝑌. 
(ii) 𝐹(𝑍,𝑋)���������� is an ideal in  𝐹(𝑍,𝑌)���������� for some convex balanced -
0 neighborhood 𝑍. 
In particular, 𝐹(𝑍,𝑋)����������  is an ideal in 𝐹(𝑍,𝑋∗∗)������������  for convex 
balanced -0 neighborhoods X and Z. 
Proof. (𝑖)  ⇒ (𝑖𝑖) is immediate from Proposition 2.1 
because the closed compact sets of  𝐹(𝑍,𝑋) and 𝐹(𝑍,𝑌) can 
be canonically identified with 𝑍∗ ⊗� 𝑋  and 𝑍∗ ⊗� 𝑋. 
 (𝑖𝑖)  ⇒  (𝑖). Suppose 𝐹(𝑍,𝑋)����������  is an ideal in  𝐹(𝑍,𝑌)����������. Let 𝐹 be 
a finite dimensional 
subspace of 𝑌. Then 𝐹 is injective and is obviously the 
linear subspace consisting of finite rank continuous linear 
maps from 𝑋 to 𝑌. Consequently, we can define a linear 
operator �:𝑍∗ ⊗� 𝑋 → 𝑍∗ ⊗� 𝑌 to be a Hahn Banach 
extension operator by letting �(𝑧∗) be a norm one 
preserving extension of 𝑍∗, ∀ 𝑧∗ ∈ 𝑍∗.   The set  𝐹(𝑍,𝑌)����������  is a 
locally convex space with the subspace 𝑍∗ ⊗ 𝑌 a basis of a 
balanced convex bounded 0-neighbourhood ∀ 𝑦 ∈ 𝐹(𝑍,𝑌) 
so that 𝑉 ∶ 𝑍∗ ⊗� 𝑌 →   𝐹(𝑍,𝑌)���������� is also norm 1 projection  
Now define a map 𝑈 ∶  𝐹(𝑍,𝑋) → 𝐹(𝑍,𝑋∗∗)������������ by  𝑈𝑦 ∶
 𝐹(𝑍,𝑋) → 𝐹(𝑍,𝑌). By proposition 1.3.8, the map 𝑈𝑦 is 
nuclear and thus 𝑈 ``locally 1-complements’’ 𝑋 in 𝑌. 
However, by the proof of the implication (𝑖𝑖)  ⇒  (𝑖), we 
also have the similar result in 
the case of compact operators. 
Proposition 2.3. Let 𝑋 be a locally convex space and 𝑌 a 
Banach space 𝑌.  If 𝐾(𝑍,𝑋) 
is an ideal in 𝐾(𝑍,𝑌 )  for some convex balanced 0- 
neighborhood 𝑍,  then 𝑋 is an ideal in 𝑌. 
Proposition 2.4. Let 𝑋 a locally convex space and 𝑌 a 
Banach space  and assume that 𝐾(𝑍,𝑋) is an ideal in 
𝐾(𝑍,𝑋∗∗)  for some convex balanced 0- neighborhood 𝑍. 
Then 𝑋 is an ideal in 𝑌 if and only if 𝐾(𝑍,𝑋) is an ideal in 
𝐾(𝑍,𝑌). 
Proof. In view of Proposition 2.3 we only need to prove the 
“only if” part. 
Let � be a continuous linear map from 𝑋 to 𝑌. Since 𝑋 is a 
locally convex space and 𝑌 a Banach space, then � is 
nuclear. Also let  𝐾(𝑍,𝑋)∗ and 𝐾(𝑍,𝑋∗∗) be balanced -0 
neighborhoods such that there is a nuclear map 
Φ: 𝐾(𝑍,𝑋)∗ → 𝐾(𝑍,𝑋∗∗)∗. This nuclear map is equivalent to 
the Hahn-Banach extension operator for finite dimensional 
convex balanced 0- neighborhood spaces. Let Ψ be a 
composition of the nuclear map Φ with the continuous 
linear map �, defined by  
(Ψ𝑓)(𝑇) =  (Φ𝑓)(𝜙∗\𝑌 ∘ 𝑇),   
 𝑓 ∈ 𝐾(𝑍,𝑋∗)∗, 𝑇 ∈ 𝐾(𝑍,𝑌 ),  
then  Ψ is  nuclear and hence compact by proposition 1.3.8. 
 The composite nuclear map Ψ consequently is a 
translation-invariant metric which induces a topology on 
𝐾(𝑍,𝑋)∗ for the convex balanced 0- neighborhood space 
𝐾(𝑍,𝑌 ) with  ∥ Ψ ∥ ≤  1. Hence Ψ is a Hahn Banach 
extension operator. 
Theorem 2.5. Let 𝑋,𝑍 be locally convex spaces and 𝑌 a 
Banach space such that 𝑋 is a basis of convex balanced 0- 
neighborhood subset of 𝑍. Then 𝐾(𝑌,𝑋) is an ideal in 
𝐾(𝑌,𝑍 ) if and only if 𝐾(𝑊,𝑋) is an ideal in 𝐾(𝑊,𝑍 ) for 
every separable ideal 𝑊 𝑖𝑛 𝑌. 

Proof. Assume that the separable ideal 𝑊 has a nuclear 
structure and for some sequence of inner products <. , >𝑃 
for 𝑝 ∈ (0,1,2,3, … . . ) on  𝐾(𝑌,𝑍) such that  ∥. ∥0 ≤ ∥. ∥1 ≤ ⋯ 
and 𝐾(𝑌,𝑋 ) a subspace in the completion of 𝐾(𝑌,𝑍). 
Assume that 𝐾(𝑌,𝑋) is separable in the completion space 
𝐾(𝑌,𝑍).  With reference to the definition of the nuclear 
structure in section 1.3, denote the space 𝐾(𝑌,𝑍) by ℋ 
which is the intersection of all the compact spaces and 
𝐾(𝑌,𝑋) by 𝐻𝑃, a dense subspace in ℋ. 
Let :Φ: 𝐾(𝑌,𝑋)∗ → 𝐾(𝑌,𝑍)∗  and  �: 𝑊∗  →  𝑌∗ be Hahn-
Banach extension 
operators equivalent to Hilbert Schimidt operators for 
some orthonormal basis in 𝐾(𝑍,𝑋)∗ and 𝑊∗. Let 
𝑓 ∈ 𝐾(𝑊,𝑋)∗  be any finite dimensional nuclear subspace 
and and  𝑆 ∈ 𝐾(𝑍,𝑋)  a compact space, then the composite 
space 𝑓̅(𝑆)  =  𝑓(𝑆\𝑊) is a projective limit topology from 
inclusions 𝐾(𝑊,𝑌) → 𝐾(𝑊,𝑍) for a separable ideal 𝑊.   
Thus we can define a composite nuclear map Ψ from 
𝐾(𝑊,𝑋)∗ →  𝐾(𝑊,𝑍)∗ by 
(Ψ𝑓)(𝑇) =  �Φ𝑓̅�(𝑇∗∗ ∘ 𝜙∗\𝑌), 𝑓 ∈ 𝐾(𝑊,𝑍)∗, 𝑇 ∈ 𝐾(𝑊,𝑍).  
With Ψ being a decreasing norm 1 projection on 𝑊∗. Now 
for 𝑇 ∈ 𝐾(𝑊,𝑋), we have 𝑇∗∗ ∘ 𝜙∗\𝑌 ∈ 𝐾(𝑌,𝑋)  and 
therefore 
(Ψ𝑓)(𝑇) =  �Φ𝑓̅�(𝑇∗∗ ∘ 𝜙∗\𝑌) = 𝑓̅(𝑇∗∗ ∘ 𝜙∗\𝑌)   
= 𝑓(𝑇∗∗ ∘ 𝜙∗\𝑊) = 𝑓(𝑇∗∗\𝑊) = 𝑓(𝑇).  
Hence Ψ is a Hahn-Banach extension operator equivalent 
to the continuous identity map in inclusion closed compact 
spaces  𝐾(𝑊,𝑋) of  𝐾(𝑊,𝑍). 
Conversely, assume that 𝐾(𝑊,𝑋) is an ideal in 𝐾(𝑊,𝑍) for 
every separable 
ideal 𝑊 with a nuclear structure in 𝑍. Let 𝐹 ⊆  𝐾(𝑌,𝑍) be a 
finite dimensional subspace. By remark 1.3.1 the set 
{𝑇∗𝑧∗:𝑇 ∈ 𝐹, 𝑧∗ ∈ 𝑍∗} is locally compact and  separable- by 
the Hilbert Schimidt assumption. Also by a theorem due to 
Sims and 
Yost (1989), we can find a separable ideal 𝑊 𝑖𝑛 𝑍 with a 
Hahn-Banach extension operator �: 𝑊∗  →  𝑌∗ such that 
{𝑇∗𝑧∗:𝑇 ∈ 𝐹, 𝑧∗ ∈ 𝑍∗} ⊆  𝜙(𝑊∗). If we let 𝐼 be an identity 
map from the separable locally compact nuclear structure 
𝑊 to the Banach space 𝑌, then  𝐼∗: 𝑌∗  →  𝑊∗ is the 
restriction operator and we get  
 𝐼�(𝑊∗) = (� ∘ 𝐼∗)\�(𝑊∗). On 𝑊 we can find a norm 1 
decreasing linear operator  𝑉:𝐹𝑊 → 𝐾(𝑊,𝑋) such that 
𝑉(𝑆) = 𝑆 for every subspace 𝑆 of all intersection of  spaces 
of finite rank continuous linear maps on 𝑊.  Similarly, we 
can define another finite rank continuous norm 1 
decreasing linear operator 𝑈 as a composite linear map  on 
𝑊 by  𝑈(𝑇) = (𝑉(𝑇 ∘ 𝐼))∗∗  ∘ 𝜙∗\𝑍 .  Then for any 
𝑦 ∈ 𝑌,   𝑧∗ ∈ 𝑍∗,  and  𝑇, a finite rank continuous linear 
operator such that   𝑇∗𝑧∗ ∈ 𝜙(𝑊∗), we get 
𝑧∗(𝑈(𝑇)𝑦)  =  𝑧∗((𝑉(𝑇 ∘ 𝐼))∗∗  ∘ (𝜙∗𝑦))  
=  𝑧∗((𝑇∗∗ ∘ 𝐼∗∗) (𝜙∗𝑦))  
=  𝑧∗((𝑇∗∗ ∘ 𝐼∗∗  ∘ 𝜙∗)𝑦)  
=  ((𝜙 ∘ 𝐼∗ ∘ 𝑇∗) (𝑧∗))(𝑦)  
=  (𝑇∗𝑧∗)(𝑦) =  𝑦∗(𝑇𝑧).  
Thus 𝑈 is linearly isomorphic. Hence 𝐾(𝑍,𝑋) is an ideal in 
𝐾(𝑍,𝑌).  
ACKNOWLEDGEMENT. 
 This project was funded by Chuka University IRF. The 
authors are indebted to the University’s Management for 
their support. 
REFERENCES 
[1] Chong Man Cho and Eun Joo Lee, (2004)  Hereditary 
properties of certain Ideals of Compact operators. Bull. 
Korean Math. Soc. 41, No. 3, 457-464. 



Musundi et.al/Conjecture of Banach Space Operator Ideals In Nuclear Spaces 

200 

[2] Godefroy G., Kalton N. J. and Saphar P. D., (1993) 
Unconditional ideals in Banach spaces, IBID Press. 104, 13-
59. 
[3] Grothedieck Alexandre, (1955) Produits tensoriels 
topologiques et espaces nucléaires, Memoirs, AMS, 16. 
[4] Jeremy J. Becnel and Ambar N. Sengupta, (2009) 
Nuclear Space Facts, Strange and Plain. 

[5] Lima, A and Oja, E., (2004)  Ideals of compact operators. 
J.Math.Soc. 77, 91-110. 
[6] Rudin, Walter, (1987)  Functional Analysis, New York : 
McGraw-Hill.  
[7] Sims B. and Yost D., (1989)  Linear Hahn-Banach 
extension operators. Proc. Edinburgh Math. Soc. 32, 53–57. 
 [8] Taylor J. L., (1995) Notes on Locally Convex Topological 
Vector Spaces, University of Utah.

 

View publication statsView publication stats

https://www.researchgate.net/publication/325065290

