

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FORTH YEAR SECOND SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAP 422

COURSE TITLE: MEASURE THEORY AND INTEGRATION

DATE: 17/11/2022 **TIME**: 8:00 AM - 10:00 AM

Answer question ONE and any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Set function
 - ii. Measure
 - iii. Finite set function
 - iv. Positive set function
- b) Show that if E is a set in R, and $E = \bigcup_{1}^{r} [a_i b_i] = \bigcup_{1}^{s} [c_j d_j]$ are two representations of E, then $\sum_{1}^{r} (b_i a_i) = \sum_{1}^{s} (d_j c_j)$
- c) State the unique Extension Theorem (UET)
- d) Show that if $\alpha_i \uparrow \alpha$ and $\beta_i \uparrow \beta$ then $\alpha_i + \beta_i \uparrow \alpha + \beta$

QUESTION TWO (20 MARKS)

- a) Given R is a ring of subsets of a set X, show that the monotone ring generated by R coincides with the ring generated by R; M(R) = G(R)
- b) Given μ is a measure on a ring R, show that
 - i. μ is monotonic, that is $\mu(E) \le \mu(F)$ whenever E and F are sets in R such that $E \subset F$
 - ii. μ is conditionally subtractive that is $\mu(E F) \le \mu(F) \mu(E)$ whenever E and F are sets in R such that $E \subset F$ and $\mu(E)$ is finite
 - iii. μ is finitely additive that is if $E_1, ..., E_n$ are mutually disjoint sets in R, then $\mu(\bigcup_{1}^{n} E_n) = \sum_{1}^{n} \mu(E_n)$
 - iv. μ is countably additive that is, if E_k is a sequence of mutually disjoint sets in R such that $\bigcup_{1}^{\infty} E_k$ is in R, then $\mu(\bigcup_{1}^{\infty} E_k) = \sum_{1}^{\infty} \mu(E_k)$ in the sense that the LUB of the (increasing) sequence of partial sums $\sum_{1}^{\infty} \mu(E_k)$ is equal to $\mu(\bigcup_{1}^{\infty} E_k)$

QUESTION THREE (20 MARKS)

- a) Define the following terms
 - i. Union
 - ii. Intersection
 - iii. Difference
 - iv. Symmetric difference
 - v. Family of elements
- b) Show that if v is an outer measure, the class M of v-measurable sets is a ring

c) State the Lemma on Monotone classes (LCM)

QUESTION FOUR (20 MARKS)

- a) Explain the following terms
 - i. f = g almost everywhere
 - ii. $f \le g$ almost everywhere
 - iii. f is constant almost everywhere
- b) Show that if f_n is a sequence of integrable functions such that $f_n \ge 0$ a.e. and $\lim\inf f \int f_n \ d\mu < \infty$, then there exists an integrable function f such that $f = \lim\inf f_n \ a.e.$ and one has $\int f \ d\mu \le \lim\inf \int f_n \ d\mu$

QUESTION FIVE (20 MARKS)

- a) Show that (μ_i) is an increasingly directed family of measures on a ring R and μ is the set function on R defined by the formula $\mu(E) = LUB \ \mu_i(E)$, then μ is a measure on R. Notation $\mu = LUB \ \mu_i$
- b) Show that if f, g, h are extended real valued functions on X, then
 - i. f = f almost everywhere
 - ii. If f = g almost everywhere then g = f almost everywhere
 - iii. if f = g a.e. and g = h a.e. then f = h a.e.