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QUESTION ONE (20 MARKS)

a) Define the following terms
i.  Set function
ii.  Measure
iii.  Finite set function
iv.  Positive set function
b) Show that if E isasetin R, and E = UT[a;b;) = Uj[c;d;) are two representations of
E, then ¥7(b; — a;) = X31(d; — ¢;)
¢) State the unique Extension Theorem (UET)

d) Show thatifa; Taand; T Bthena; + B; T a +f8

QUESTION TWO (20 MARKS)

a) Given R is a ring of subsets of a set X, show that the monotone ring generated by R
coincides with the ring generated by R; M(R) = G(R)
b) Given u is a measure on a ring R, show that
i.  u is monotonic, that is u(E) < u(F) whenever E and F are sets in R such that
EcF
ii.  w is conditionally subtractive that is u(E — F) < u(F) — u(E) whenever E
and F are sets in R such that E € F and u(E) is finite
iii.  w is finitely additive that is if £, ..., E,, are mutually disjoint sets in R, then
u(UT En) = X3 u(Ey)
iv.  uis countably additive that is, if £}, is a sequence of mutually disjoint sets in R
such that U Ey is in R, then u(UT Ex) = 27 u(Ey) in the sense that the LUB

of the (increasing) sequence of partial sums ».7° u(Ey) is equal to u(U7" Ey)

QUESTION THREE (20 MARKS)
a) Define the following terms
i.  Union
ii.  Intersection
iii.  Difference
iv.  Symmetric difference
v.  Family of elements

b) Show that if v is an outer measure, the class M of v-measurable sets is a ring




¢) State the Lemma on Monotone classes (LCM)

QUESTION FOUR (20 MARKS)

a) Explain the following terms
i.  f = g almost everywhere
ii. f < g almost everywhere
iii.  f isconstant almost everywhere
b) Show that if f, is a sequence of integrable functions such that f;, > 0 a.c. and

liminf [ f, du < oo, then there exists an integrable function f such that f =

liminf f, a.e. and one has [ f du < liminf [ f,du

QUESTION FIVE (20 MARKS)

a) Show that (y;) is an increasingly directed family of measures on a ring R and y is the
set function on R defined by the formula u(E) = LUB u;(E), then u is a measure on
R. Notation u = LUB y;

b) Show thatif f, g, h are extended real valued functions on X, then
i. f = f almost everywhere
ii. If f = g almost everywhere then g = f almost everywhere

. if f=gae.andg=nhae.thenf =ha.e.




