KIBABII UNIVERSITY # SUPPLIMENTARY/SPECIAL UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022 ## FOURTH YEAR FIRST SEMESTER EXAMINATIONS ### BACHELOR OF SCIENCE **COURSE CODE: SPH 418** COURSE TITLE: NUCLEAR PHYSICS DATE: 17/11/2022 TIME: 8:00AM-10:00AM #### INSTRUCTIONS TO CANDIDATES Answer question ONE and any TWO of the remaining. Time: 2 hours KIBU observes ZERO tolerance to examination cheating ## **QUESTION ONE (30 MARKS)** | a) State Dalton's atomic theory | (2 marks) | |--|--| | b) Differentiate between mass number (A) and atomic number (Z) | (2 marks) | | c) Define half-life | (2 marks) | | d) State any three properties of X-rays | (3 marks) | | e) State any three properties used to detect X-rays | (3 marks) | | f) State two major developments that played a major role in the formulation of the Bohr's | | | model of atom | (2 marks) | | h) What is ionization energy? | (3 marks) | | i) State Pauli exclusion principle | (2 marks) | | j) State the Aufbau principle k) Name any two types of radioactive decay l) What are nuclear forces? m) Define carbon Dating? n) Name three fundamental particles that make up an atom | (2 marks)
(2 marks)
(1 mark)
(2 marks)
(3 marks) | | QUESTION TWO (20 MARKS) | | | a)What is natural radioactivity? | (2 marks) | | b) Discuss the penetrating power of radiation of the three types of radioactive decay | s (3 marks) | | c) The half-life of a Radium is 1590 years. Find its decay constant λ and determine the number | | | of nuclei in one gram of Radium. | (5 marks) | | d) Discuss nuclear reactions | (10 marks) | | | | ## **QUESTION THREE (20 MARKS)** - a) (i) A Curie is very large and dangerous amount of radioactivity. How long would one have to wait for the tritium activity to reduce to 1 mCi? (4 marks) - (ii) The half-life of radium equal to 1590 years. Find its decay constant λ and determine the number of the nuclei in one gram of Radium. (4 marks) - b) The Figure below shows a set up used to produce X-rays. Describe how the X-rays are produced by the set up and highlight the uses of X-rays (12 marks) # **QUESTION FOUR (20 MARKS)** Discuss Bohr's postulates of the hydrogen atom (20 marks) # **QUESTION FIVE (20 MARKS)** Write notes on Yukawa's theory of nuclear forces (20 marks)