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The current paper proposes a technique for the numerical solution of Burgers equations. The method is based on finite
difference formula combined with the Galerkin method, which uses the interpolating scaling functions. Several test
problems are given, and the numerical results are reported to show the accuracy and efficiency of the new algorithm.
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1. Introduction

Nonlinear partial differential equations arise in a large number of mathematical and engineering problems. Systems of nonlinear partial
differential equations have attracted much attention in studying solid state physics, fluid mechanics, chemical, propagation of undular
bores in shallow water waves [1], propagation of waves in elastic tube filled with a viscous fluid [2], and plasma physics [3]. Burgers
equation is one of the well-known equations in mathematics and physics. This equation has been found to describe various kinds of
phenomena such as the mathematical model of turbulence [4] and the approximate theory of flow through a shock wave traveling
in a viscous fluid [5]. The Korteweg–de Vries–Burgers (KdV–Burgers) equation is a 1-D generalization of the model description of the
density and velocity fields that takes into account pressure forces as well as the viscosity and the dispersion. Several numerical meth-
ods are used such as Chebyshev spectral collocation method [6], meshfree interpolation method [7], modified extended backward
differentiation formula [8], direct variational methods [9], and so on to solve these equations [10, 11].

In this paper, mixed finite difference [12] and Galerkin methods are used to solve the 1-D, KdV [13], and coupled Burgers equations
with interpolating scaling functions (ISFs). Burgers equation in this paper is represented in three types as

.E1/ 1-D Burgers equation

ut C ˛uux � �uxx D 0, .x, t/ 2 Œa, b�� Œ0, T�, (1.1)

with the initial and boundary conditions

u.x, 0/D f .x/, x 2 Œa, b�, (1.2)

u.x, t/D g.t/, .x, t/ 2 Œa, b�� Œ0, T�, (1.3)

respectively, where ˛ and � are arbitrary constants.
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.E2/ KdV–Burgers equation

ut C ˛uux � �uxx C�uxxx D 0, .x, t/ 2 Œa, b�� Œ0, T�, (1.4)

with the initial condition

u.x, 0/D Qf .x/, x 2 Œa, b�, (1.5)

and the boundary conditions

u.x, t/D Qg.t/, ux.x, t/D Qh.t/, .x, t/ 2 Œa, b�� Œ0, T�, (1.6)

where ˛, � , and � are arbitrary constants.
.E3/ Coupled Burgers equations (

ut � uxx C 2uux C ˛.uv/x D 0,

vt � vxx C 2vvx C ˇ.uv/x D 0,
(1.7)

with the boundary and initial conditions (
u.a, t/D f1.t/, v.a, t/D g1.t/, t > 0,

u.b, t/D f2.t/, v.b, t/D g2.t/, t > 0,
(1.8)

˚
u.x, 0/D f .x/, v.x, 0/D g.x/, x 2 Œa, b�, (1.9)

respectively, where ˛ and ˇ are arbitrary constants.

E1 is the simplest nonlinear equation for diffusive waves in fluid dynamics. Burgers equation arises in many physical problems
including 1-D turbulence, sound waves in a viscous medium, shock waves in a viscous medium [14, 15], waves in fluid filled viscous
elastic tubes, and magnetohydrodynamic (MHD) waves [16] in a medium with finite electrical conductivity [17]. The Burgers equation
is similar to the 1-D Navier–Stokes equation without the stress term [17]. It is also used in the description of the variation in vehicle
density in highway traffic [14, 18]. It is one of the fundamental equations in fluid mechanics. The Burgers equation demonstrates the
coupling between diffusion uxx and the convection process uux . Burgers introduced this equation to capture some of the features of
turbulent fluid in a channel caused by the interaction of the opposite effects of convection and diffusion [19]. It is also used to describe
the structure of shock waves, traffic flow, and acoustic transmission [20]. A great deal of effort has been expended in the last few years to
compute efficiently the numerical solution of the Burgers equation for small and large values of the kinematic viscosity. So far, various
numerical algorithms such as automatic differentiation method [21], Galerkin finite element method [22], cubic B-splines collocation
method [23, 24], spectral collocation method [6, 25], sinc differential quadrature method [26], polynomial-based differential quadrature
method [27], quartic B-splines differential quadrature method [28], and quartic B-splines collocation method [29] are proposed. Veksler
and Zarmi [14] constructed fronts from exponential wave solutions of the Lax pair associated with the Burgers equation. In [14], a use-
ful study was introduced to handle the perturbed and the unperturbed Burgers equations. The normal form analysis of the perturbed
equation and a number of aspects of the freedom were investigated in [14].

The KdV–Burgers equation is a 1-D generalization of the model description of the density and velocity fields that takes into account
pressure forces as well as the viscosity and the dispersion. It may be a more flexible tool for physicists than the Burgers equation.
Equation (1.4) has been derived as a model for the propagation of weakly nonlinear dispersive long waves in some physical contexts
when dissipative effects occur [30, 31]. The global well-posedness of (1.4) and the generalized KdV–Burgers equation have been stud-
ied by many authors (see [32, 33] and the reference therein). In [32] Molinet and Ribaud studied (1.4) and showed that (1.4) is globally
well-posed in Hs.s > �1/.

Several numerical methods to solve this equation have been given such as algorithms based on Adomian decomposition method
[34,35], finite difference method [34]. Also, Galerkin quadratic B-spline finite element method [36] and spectral collocation method [37]
have been used to obtain numerical solutions of some nonlinear evolution equations [38].

The coupled Burgers system was derived by Esipov [39] to study the model of polydispersive sedimentation. System (1.7) arises in
various physical contexts, for example, it is a simple model of sedimentation or evolution of scaled volume concentrations of two kinds
of particles in fluid suspensions or colloids, under the effect of gravity [40]. Also, it is a simple model coming from the theory of 1-D
MHD turbulence. Because the full MHD equations [16] are too complicated to investigate the small scale structure of the MHD turbu-
lence, it is necessary to present simple models, which contain essential features of the MHD turbulence [41]. The system (1.7) is the
simplest possible set of equations, which allow ‘Alfvenization’, that is, the interchange of magnetic and fluid energies. It can be derived
from the full MHD equations [42] when the plasma density length scales are much longer than those of the magnetic field, resulting,
to leading order, in a constant density, see [43] for details. Equation (1.7) may also model the opposite limit of a fluid–dominated (i.e.,
unmagnetized) system [44]. For broader applicability of (1.7), we refer the interested reader to references [45–47] and so on.

In recent years, several studies for the coupled linear and nonlinear initial/boundary value problems have been appeared in the
literature. Numerical algorithms such as harmonic differential quadrature finite differences coupled approach [48] and conjugate fil-
ter approach [49] are available for obtaining approximate solutions of coupled equations as well as nonlinear differential equations.
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Also, an application of meshfree interpolation method [50, 51] for the numerical solution of the coupled nonlinear partial differential
equations is proposed in [7]. Authors of [6] have obtained the approximate solution of the viscous coupled Burgers equations using
cubic-spline collocation method. The equation has been solved by Dehghan et al. [52] using a Pade technique, and authors of [53] have
used Fourier pseudospectral method [54] to find numerical solution of the equation. Variational iteration method [55, 56] has been
presented for solving the coupled viscous Burgers equations by Adbou and Soliman [57]. Also, the differential transformation method
[58], Bäcklund transformation and similarity reduction technique [59] and cubic B-spline collocation scheme on the uniform mesh [60]
are proposed to solve these equations.

In this work, the interpolating scaling functions (ISFs) are used to solve Burgers equation. This type of function is obtained by mul-
tiresolution analysis and is called father wavelets. Solving Burgers equation is the aim of this paper by mixed finite difference and
Galerkin method (MFDGM). For this purpose, we apply finite difference method [61] for variable t and then use the ISFs to solve the
ordinary differential equation obtained from the finite difference method.

The outline of this paper is as follows. In Section 2, we describe the interpolation scaling functions and their properties and construct
their operational matrix of derivatives. In Section 3, the proposed method is used to approximate the solution of the problem. Also, the
stability of this method is described in Subsection 3.4. In Section 4, the numerical results of applying the method of this article on some
test problems for the 1-D, KdV, and coupled Burgers equations are presented. Finally, a conclusion is drawn in Section 5.

2. The interpolating scaling functions

Suppose that Lk.t/, kD 0, : : : , r � 1, are the Lagrange interpolating polynomials given as [62, 63]

Lk.t/D
r�1Y

iD0,i¤k

�
t� �i

�k � �i

�
,

and !k , kD 0, : : : , r � 1, are the Gauss–Legendre quadrature weights given as

!k D
2

rP0r.�k/Pr�1.�k/
,

where for any fixed nonnegative integer number r, Pr is the Legendre polynomial of order r and for k D 0, : : : , r � 1, �k are the roots of
Pr . Now, ISFs are given by [64, 65]

�k.t/D

( q
2
!k

Lk.2t� 1/, t 2 Œ0, 1�,

0, otherwise.

2.1. The function approximation

For any two fixed nonnegative integer numbers r and n, a function f .t/ 2 L2Œa, b�may be represented by ISF expansion as

f .t/�
b�1X

mDa

r�1X
kD0

2n�1X
lD0

skm
nl �

km
nl .t/D STˆ.t/, (2.1)

where

SD
h

s0,a
n0 , : : : , sr�1,a

n0 j : : : js0,a
n,2n�1, : : : , sr�1,a

n,2n�1j : : : : : : js
0,b�1
n0 , : : : , sr�1,b�1

n0 j : : : js0,b�1
n,2n�1, : : : , sr�1,b�1

n,2n�1

iT
,

ˆ.t/D
h
�0,a

n0 .t/, : : : ,�
r�1,a
n0 .t/j : : : j�0,a

n,2n�1.t/, : : : ,�
r�1,a
n,2n�1.t/j : : :

: : : j�0,b�1
n0 .t/, : : : ,�r�1,b�1

n0 .t/j : : : j�0,b�1
n,2n�1.t/, : : : ,�

r�1,b�1
n,2n�1 .t/

iT
,

(2.2)

and the coefficients skm
nl are computed as

skm
nl D

Z 1

0
f .t/�km

nl .t/dtD

Z hm
lC1

hm
l

f .t/�km
nl .t/dt,

where

hm
l D

lCm2n

2n
, lD 0, : : : , 2n � 1, mD a, : : : , b� 1.

These coefficients may be computed using Gauss–Legendre quadrature [65] as

skm
nl � 2�n=2

r
!k

2
f
�
2�n � O�k C lCm2n�� ,

kD 0, : : : , r � 1, lD 0, : : : , 2n � 1, mD a, : : : , b� 1,

(2.3)8
9
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where

O�k D
�k C 1

2
.

Let

�k,m
nl .t/D 2.n=2/�k �2nt � l�m2n� ,

kD 0, : : : , r � 1, lD 0, : : : , 2n � 1, mD a, : : : , b� 1,
(2.4)

where n is a fixed nonnegative integer number, then we have the following orthonormality conditions [65]

Z 1

0
�k,m

nl .t/�
Kk Km
nKl
.t/dtD ı

lKl
ı

kKk
ım Km,

k, KkD 0, : : : , r � 1, l, KlD 0, : : : , 2n � 1, m, KmD a, � � � b� 1.

2.2. The operational matrix of the derivative

Suppose that the derivative of f .t/ in (2.1) be given by

d

dt
f .t/�

b�1X
mDa

r�1X
kD0

2n�1X
lD0

Qskm
nl �

km
nl .t/D QS

Tˆ.t/, (2.5)

where QS is a vector defined similarly to (2.2). We express relation between S and QS by

QSD DS, (2.6)

where D is the operational matrix of the derivative for the ISFs and can be shown as a block tridiagonal matrix as [64]

DD 2n

2
6666666664

R H

�HT R H
. . .

. . .
. . .

. . .
. . .

. . .

�HT R H
�HT R

3
7777777775

N�N

,

where, each block is an r � r matrix and ND .b� a/r2n. Also for k, iD 1, : : : , r, we have

ŒR�ki D
1

2
� i.1/�k.1/� � i.0/�k.0/� qki ,

ŒR�ki D
1

2
� i.1/�k.1/�

1

2
� i.0/�k.0/� qki ,

�
R
�

ki D �
i.1/�k.1/�

1

2
� i.0/�k.0/� qki ,

ŒH�ki D
1

2
� i.0/�k.1/.

The operational matrix of the derivative is exact for polynomials up to degree r � 1.

3. The mixed finite difference and Galerkin method

In this section, we solve nonlinear partial differential equations E1, E2, and E3 on a bounded domain. For this purpose, we use finite
difference method for one variable to reduce these equations to a system of ordinary differential equations [66], then we solve this
system and find the solution of the given partial differential equation at the points ti , iD 0, : : : , 1

ıt .
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3.1. The mixed finite difference method for equation E1

Let us first consider the 1-D Burgers equation that has the form

ut C ˛uux � �uxx D 0, .x, t/ 2 Œa, b�� Œ0, T�, (3.1)

with the initial condition

u.x, 0/D f .x/, x 2 Œa, b�, (3.2)

and the boundary conditions

u.a, t/D g1.t/, u.b, t/D g2.t/, t 2 Œ0, T�. (3.3)

We discretize (3.1) according to the following � -weighted scheme

uhC1 � uh

ıt
C �

�
˛uhC1uhC1

x � �uhC1
xx

	
C .1� �/

�
˛uhuh

x � �uh
xx

	
D 0, (3.4)

where ıt is the time step size and uh is used to show u.x, t C ıt/. To linearize the nonlinear term uhC1uhC1
x , we use the linearization

form applying in [7, 67–69].

.uux/
hC1 D uhC1uh

x C uhuhC1
x � uhuh

x . (3.5)

Using the linearized value of .uux/
hC1 in (3.4), we obtain

uhC1 � uh

ıt
C �

�
˛
�

uhC1uh
x C uhuhC1

x � uhuh
x

	
� �uhC1

xx

	
C .1� �/.˛uhuh

x � �uh
xx/D 0. (3.6)

Rearranging (3.6) and using the Crank–Nicolson method with � D 1
2 , we obtain

uhC1C
˛ıt

2

�
uhC1uh

x C uhuhC1
x

	
�
�ıt

2
uhC1

xx D uhC
ıt

2
�uh

xx . (3.7)

Employing (2.1), the unknown function uh can be approximated as

uh.x/�
b�1X

mDa

r�1X
kD0

2n�1X
lD0

ukm
nl �

km
nl .x/D Uh

Tˆ.x/, (3.8)

where Uh is a N� 1 vector. Also using (2.6), we can write

uh
x � UT

h
d

dx
ˆ.x/D UT

h Dˆ.x/, (3.9)

and

uh
xx � UT

h
d2

dx2
ˆ.x/D UT

h D2ˆ.x/. (3.10)

We assume

ehC1
1 .x/D uhC1uh

x , ehC1
2 .x/D uhuhC1

x . (3.11)

Using (2.1), we obtain

ehC1
1 .x/� ET

1hC1
ˆ.x/, ehC1

2 .x/� ET
2hC1

ˆ.x/, (3.12)

where EihC1 , iD 1, 2 are the N� 1 vectors with entries

EihC1 D
h

ei
0a
n0, : : : , ei

r�1,a
n0 j : : : jei

0,a
n,2n�1, : : : , ei

r�1,a
n,2n�1j : : : jei

0,b�1
n0 , : : : , ei

r�1,b�1
n0 j : : : jei

0,b�1
n,2n�1, : : : , ei

r�1,b�1
n,2n�1

iT
, (3.13)

ei
km
nl � 2�n=2

r
!k

2
ehC1

i

�
2�n � O�k C lCm2n�� , (3.14)

kD 0, : : : , r � 1, lD 0, : : : , 2n � 1, mD a, : : : , b� 1.
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We can write

EihC1 D UT
hC1�ihC1 , iD 1, 2, (3.15)

where�ihC1 , iD 1, 2 are N� N known matrices. Now replacing (3.8), (3.10), and (3.15) in (3.7) yields

UT
hC1

�
IC

˛ıt

2

�
�1hC1 C�2hC1

�
�
�ıt

2
D2
�
ˆ.x/D UT

h

�
IC

�ıt

2
D2
�
ˆ.x/. (3.16)

Let

M1 D

�
IC

˛ıt

2

�
�1hC1 C�2hC1

�
�
�ıt

2
D2
�

,

and

M2 D

�
IC

�ıt

2
D2
�

,

then (3.16) can be written as

UT
hC1M1ˆ.x/D UT

h M2ˆ.x/. (3.17)

The entries of vectorˆ.x/ are independent, so we obtain

UT
hC1M1 D UT

h M2. (3.18)

Using (3.3), we have

UT
hC1ˆ.a/D g1..hC 1/ıt/, UT

hC1ˆ.b/D g2..hC 1/ıt/. (3.19)

Replacingˆ.a/ andˆ.b/ at the first and last columns of M1, respectively, and usingn
UT

h M2

o
1,1
D g1..hC 1/ıt/,

and n
UT

h M2

o
1,N
D g2..hC 1/ıt/,

we can write

UT
hC1
QM1 D UT

h
QM2C±1, (3.20)

where

QM2 D

2
666664

1 M21,2 � � � M21,N�1 0

0 M22,2 � � � M22,N�1 0
...

... � � �
...

...

0 M2N,2 � � � M2N,N�1 1

3
777775 ,

±1 D Œg1..hC 1/ıt/� Uh1,1 , 0, � � � , 0, g2..hC 1/ıt/� UhN,1 �
T .

Using (2.1), the function f .x/ can be approximated as

f .x/� FTˆ.x/. (3.21)

Let

UT
0 D FT . (3.22)

Equation (3.20) using (3.22) as the starting points gives a linear system of equations, which can be solved to find UhC1 in any step
hD 1, 2, : : :. So the unknown function u.x, th/ at any time tD th, hD 1, 2, : : : , can be found.
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3.2. The mixed finite difference method for equation E2

Consider the KdV–Burgers equation

ut C ˛uux � �uxx C�uxxx D 0, .x, t/ 2 Œa, b�� Œ0, T�, (3.23)

with the initial condition

u.x, 0/D Qf .x/, x 2 Œa, b�, (3.24)

and the boundary conditions

u.a, t/D Qg1.t/, u.b, t/D Qg2.t/, t 2 Œ0, T�,

ux.b, t/D Qh.t/, t 2 Œ0, T�. (3.25)

Using the following � -weighted scheme for KdV–Burgers equation, we obtain

uhC1 � uh

ıt
C �

�
˛uhC1uhC1

x � �uhC1
xx C�uhC1

xxx

	
C .1� �/

�
˛uhuh

x � �uh
xx C�uh

xxx

	
D 0, (3.26)

where ıt is the time step size and uh is used to show u.x, t C ıt/. To linearize the nonlinear term uhC1uhC1
x , we use the linearization

form described in Subsection 3.1. Rearranging (3.26) and using the Crank–Nicolson method with � D 1
2 , we obtain

uhC1C
˛ıt

2

�
uhC1uh

x C uhuhC1
x

	
�
�ıt

2
uhC1

xx C
�ıt

2
uhC1

xxx D uhC
ıt

2
�uh

xx �
�ıt

2
uh

xxx . (3.27)

Using (3.8)–(3.12) and (3.15), we obtain

UT
hC1

�
IC

˛ıt

2

�
�1hC1 C�2hC1

�
�
�ıt

2
D2C

�ıt

2
D3
�
ˆ.x/D UT

h

�
IC

�ıt

2
D2 �

�ıt

2
D3
�
ˆ.x/. (3.28)

By replacing M3 D
�

IC ˛ıt
2

�
�1hC1 C�2hC1

�
� �ıt

2 D2C �ıt
2 D3

	
, and M4 D

�
IC �ıt

2 D2 � �ıt
2 D3

	
, we obtain

UT
hC1M3ˆ.x/D UT

h M4ˆ.x/. (3.29)

The entries of vectorˆ.x/ are independent, so we obtain

UT
hC1M3 D UT

h M4. (3.30)

Using (3.25), we have

UT
hC1ˆ.a/D Qg1..hC 1/ıt/,

UT
hC1ˆ.b/D Qg2..hC 1/ıt/,

UT
hC1Dˆ.b/D Qh..hC 1/ıt/.

(3.31)

Replacingˆ.a/, Dˆ.b/, andˆ.b/ at the first, second, and last columns of M3, respectively, and using the relations

n
UT

h M4

o
1,1
D Qg1..hC 1/ıt/,n

UT
h M4

o
1,N
D Qg2..hC 1/ıt/,

and n
UT

h M4

o
1,2
D Qh..hC 1/ıt/,

we can write

UT
hC1
QM3 D UT

h
QM4C±3, (3.32)9

0
0
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where

QM4 D

2
666664

1 0 M41,2 � � � M41,N�1 0

0 1 M42,2 � � � M42,N�1 0

...
...

... � � �
...

...

0 0 M4N,2 � � � M4N,N�1 1

3
777775 ,

±3 D
h
Qg1..hC 1/ıt/� Uh1,1 , Qh..hC 1/ıt/� Uh2,1 , 0, � � � , 0, Qg2..hC 1/ıt/� UhN,1

iT
.

Now using (3.24), Qf .x/ can be approximated as

Qf .x/� QFTˆ.x/. (3.33)

Let

UT
0 D
QFT . (3.34)

Equation (3.32) using (3.34) as the starting points gives a linear system of equations, which can be solved to find UhC1 in any step
hD 1, 2, : : :. So the unknown function u.x, th/ at any time tD th, hD 1, 2, : : : , can be found.

3.3. The mixed finite difference method for coupled Burgers equation

Consider the nonlinear system of Burgers equations

ut � uxx C 2uux C ˛.uv/x D 0,
vt � vxx C 2vvx C ˇ.uv/x D 0,

(3.35)

with the boundary conditions 

u.a, t/D f1.t/ v.a, t/D g1.t/ t > 0,
u.b, t/D f2.t/ v.b, t/D g2.t/ t > 0,

(3.36)

and initial conditions ˚
u.x, 0/D f .x/ v.x, 0/D g.x/ x 2 Œa, b�, (3.37)

where ˛ and ˇ are real parameters. We use � -weighted scheme again for these equations as8<
:

uhC1�uh

ıt C �
�
�uhC1

xx C 2uhC1uhC1
x

	
C .1� �/

�
�uh

xx C 2uhuh
x

�
C ˛

�
uhvh

x C uh
x vh

�
D 0,

vhC1�vh

ıt C �
�
�vhC1

xx C 2vhC1vhC1
x

	
C .1� �/

�
�vh

xx C 2vhvh
x

�
C ˇ

�
uhvh

x C uh
x vh

�
D 0.

(3.38)

Using linearized forms of nonlinear terms uhC1uhC1
x and vhC1vhC1

x and also using Crank–Nicolson method
�
� D 1

2

�
, and by rearranging

(3.38), we obtain 8<
:

uhC1 � ıt
2 uhC1

xx C ıt
�

uhuhC1
x C uh

x uhC1
	
D uhC ıt

2 uh
xx � ˛ıt

�
uh

x vhC uhvh
x

�
,

vhC1 � ıt
2 vhC1

xx C ıt
�

vhvhC1
x C vh

x vhC1
	
D vhC ıt

2 vh
xx � ˇıt

�
uh

x vhC uhvh
x

�
.

(3.39)

Using (2.1), the unknown function vh can be approximated as

vh.x/�
b�1X

mDa

r�1X
kD0

2n�1X
lD0

vkm
nl �

km
nl .x/D Vh

Tˆ.x/, (3.40)

where Vh is a N� 1 vector. Also using (2.6), we can write

vh
x � VT

h
d

dx
ˆ.x/D VT

h Dˆ.x/, (3.41)

and

vh
xx � VT

h
d22

dx2
ˆ.x/D VT

h D2ˆ.x/. (3.42)

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 894–912
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At this work, we assume

ehC1
3 .x/D vhC1vh

x , ehC1
4 .x/D vhvhC1

x , (3.43)

ehC1
5 .x/D vhuh

x , ehC1
6 .x/D uhvh

x . (3.44)

Using (2.1) in (3.44), we obtain

ehC1
3 .x/� E3hC1

Tˆ.x/, ehC1
4 .x/� E4hC1

Tˆ.x/, (3.45)

ehC1
5 .x/� E5hC1

Tˆ.x/, ehC1
6 .x/� E6hC1

Tˆ.x/, (3.46)

where EihC1 , iD 3, : : : , 6 are the N� 1 vectors with entries the same as (3.14).
We can write

EihC1 D UT
hC1�ihC1 , iD 3, : : : , 6, (3.47)

where�ihC1 are the N�N matrices with known entries. Now by replacing (3.8)–(3.10), (3.40)–(3.42), and (3.15), (3.47) in (3.39), we have

8<
:

UhC1
T
�

I� ıt
2 D2C ıt

�
�1hC1 C�2hC1

�	
ˆ.x/D Uh

T
�

IC ıt
2 D2 � ˛ıt

�
�5hC1 C�6hC1

�	
ˆ.x/,

VT
hC1

�
I� ıt

2 D2C ıt
�
�3hC1 C�4hC1

�	
ˆ.x/D VT

h

�
IC ıt

2 D2 � ˇıt
�
�5hC1 C�6hC1

�	
ˆ.x/.

(3.48)

Let

M5 D I�
ıt

2
D2C ıt

�
�1hC1 C�2hC1

�
,

M6 D IC
ıt

2
D2 � ˛ıt

�
�5hC1 C�6hC1

�
,

M7 D I�
ıt

2
D2C ıt

�
�3hC1 C�4hC1

�
,

M8 D IC
ıt

2
D2 � ˇıt

�
�5hC1 C�6hC1

�
.

Using (3.48) and because of the independency in the entries of vectorˆ.x/, we obtain(
UhC1

T M5 D Uh
T M6,

VT
hC1M7 D VT

h M8.
(3.49)

Replacingˆ.a/ andˆ.b/ in the first and last columns of M5 and M7, respectively, and regarding the relations( ˚
Uh

M
6

�
1,1 D f1..hC 1/ıt/

˚
Uh

M
8

�
1,1 D g1..hC 1/ıt/,˚

Uh
M
6

�
1,N D f2..hC 1/ıt/

˚
Uh

M
8

�
1,N D g2..hC 1/ıt/,

we obtain (
UhC1

T QM5 D Uh
T QM6C±5,

VT
hC1
QM7 D VT

h
QM8C±7,

(3.50)

where

QM6 D

2
6664

1 M61,2 � � � M61,N�1 0
0 M62,2 � � � M62,N�1 0
...

... � � �
...

...
0 M6N,2 � � � M6N,N�1 1

3
7775 , QM8 D

2
6664

1 M81,2 � � � M81,N�1 0
0 M82,2 � � � M82,N�1 0
...

... � � �
...

...
0 M8N,2 � � � M8N,N�1 1

3
7775 ,

±5 D Œf1..hC 1/ıt/� Uh1,1 , 0, � � � , 0, f2..hC 1/ıt/� UhN,1 �
T ,

and

±7 D Œg1..hC 1/ıt/� Uh1,1 , 0, � � � , 0, g2..hC 1/ıt/� UhN,1 �
T .
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Using (3.37), the functions f .x/ and g.x/ can be approximated as

f .x/� FTˆ.x/, g.x/� GTˆ.x/. (3.51)

Suppose

UT
0 D FT , VT

0 D GT . (3.52)

Equation (3.50) using (3.52) as the starting points gives a linear system of equations, which can be solved to find UhC1 and VhC1 in any
step hD 1, 2, : : :. So the unknown functions u.x, th/ and v.x, th/ in any time tD th, hD 1, 2, : : : , can be found.

3.4. The stability analysis

In this section, we present the stability analysis of scheme (3.7), (3.27), and (3.39) by using the ISFs of the amplification matrix. Let Ou
and Ov be the exact solutions and belong to the L2Œa, b�, fu, vg, and fu�, v�g be the projection solutions and numerical solutions of (3.1),

(3.23), and (3.35) in nth space, respectively, then the error vector 	h
i , iD 1, 2 is defined by

	h
1 D uh � u�h, 	h

2 D vh � v�h.

Regarding the relations uh D UTˆ.x/ and vh D VTˆ.x/, we obtain

k	h
1k D kuh � u�h

k D kUTˆ.x/� U�T
ˆ.x/k D kUT � U�T

k, kˆ.x/k D 1. (3.53)

For the stability of the numerical scheme, we must have 	h
i ! 0 as h!1. This implies kUT � U�Tk! 0.

Let the matrices fMi , i D 1, 3, 5, 7g be invertible. Because it is not possible to show these matrices are invertible in general [7], the
minimum eigenvalues of the matrices fMi , i D 1, 3, 5, 7g for the presented examples are recorded in Tables 4, 7, 11, and 14. Thus, we
have

UT
hC1 D UT

h
QMiC1 QM

�1
i C±i QM

�1
i , iD 1, 3, 5, (3.54)

and for the coupled Burgers equation we have also

VT
hC1 D VT

h
QM8 QM

�1
7 C±7 QM

�1
7 . (3.55)

In the .hC 1/th step, we have

UT
hC1 � U�hC1

T
D
�

UT
h � U�h

T
	
QMiC1 QM

�1
i , iD 1, 3, 5, (3.56)

VT
hC1 � V�hC1

T
D
�

VT
h � V�h

T
	

M8M�1
7 . (3.57)

Using (3.56) and (3.57), we obtain

kUT
hC1 � U�hC1

T
k � kUT

h � U�h
T
kk QMiC1 QM

�1
i k, iD 1, 3, 5, (3.58)

kVT
hC1 � V�hC1

T
k � kVT

h � V�h
T
kk QM8 QM

�1
7 k. (3.59)

The necessary and sufficient conditions to obtain kUT
hC1 � U�hC1

Tk ! 0 and kVT
hC1 � V�hC1

Tk ! 0, is 
i < 1 where f
i , i D 1, 3, 5g are

the spectral radius of the matrices QMiC1 QM�1
i , i D 1, 3, 5, and 
7 is the spectral radius of the matrix QM8 QM�1

7 . These results show that the
approximate solution of equations approaches to the projection solution of these equations.

Lemma 3.1
Suppose the function f : Œ0, 1� ! R is r times continuously differentiable. Then Pr

nf approximates f with the mean error bounded as
follows [70]:

kPr
nf � fk � 2�nr 2

4rrŠ
sup

x2Œ0,1�
jf .r/.x/j.

This lemma implies that the projection solution is close to the exact solution.
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4. Numerical experiments

In this section, some numerical examples are presented to illustrate the validity and the merits of the new technique. We report L1
and the L2 errors of the solution that are defined as

L1 D max
0�i�10

jui � Quij,

and

L2 D

�Z 1

0
jui � Quij

2dx

� 1
2

,

where ui and Qui are the exact and computed values of the solution u at the points ti D
i

10 , i D 0, � � � , 10, respectively. In all examples,
the initial and boundary conditions are computed from the exact solutions. Note that all test problems are taken from the literature.

Example 4.1
Consider the 1-D Burgers equation:

ut C ˛uux � �uxx D 0, .x, t/ 2 D� Œ0, 1�, (4.1)

with the solitary wave solutions [6]

u.x, t/D
c

˛
C

�
2�

˛

�
tanh.x � ct/, (4.2)

in the region DD fx : 0< x < 1g; ˛ and � are arbitrary constants.

L1 and L2 errors for various values of ˛ and � with rD 5, nD 2 and cD 0.01, are reported in Table I. Table II shows the spectral radius
of the matrix QM2 QM�1

1 for different values of t. Also in Table III, we compare L2 error of Example 4.1 with the results of [6] for r D 5, nD 2
and cD 0.1. Table IV, shows the minimum eigenvalues of matrices QM1 for various values of ˛, � and different values of t. Figure 1 shows
the absolute error and compares the exact and approximate solutions of (4.1) with ˛ D 1, � D 0.0001 and c D 0.01 for r D 3, n D 2,
aD�3 and bD 3 in tD 1.

Example 4.2
Consider the KdV–Burgers equation

ut C 	uux � �uxx C�uxxx D 0, (4.3)

Table I. L1 and L2 errors for various values of ˛ and � for Example 4.1.

L2Error L1Error
˛ � tD 0.3 tD 0.6 tD 1.0 tD 0.3 tD 0.6 tD 1.0

0.1 0.01 7.14� 10�4 1.39� 10�3 2.24� 10�3 9.11� 10�4 1.81� 10�3 2.99� 10�3

0.001 7.88� 10�6 1.53� 10�5 2.49� 10�5 9.26� 10�6 1.85� 10�5 3.26� 10�5

0.0001 8.38� 10�8 1.70� 10�7 2.89� 10�7 7.79� 10�8 2.41� 10�7 4.13� 10�7

1 0.01 7.14� 10�5 1.39� 10�4 2.24� 10�4 9.11� 10�5 1.81� 10�4 2.99� 10�4

0.001 7.88� 10�7 1.56� 10�6 2.49� 10�6 1.09� 10�6 2.06� 10�6 3.26� 10�6

0.0001 8.36� 10�9 1.70� 10�8 2.89� 10�8 1.18� 10�8 2.41� 10�8 4.13� 10�8

Table II. Spectral radius of the matrix QM2 QM�1
1 for Example 4.1.

˛ � tD 0.3 tD 0.6 tD 1.0

0.1 0.01 0.9990389161 0.9990393784 0.9990399715
0.001 0.9998268459 0.9998269033 0.9998269795
0.0001 0.9999526577 0.9999526560 0.9999526537

1 0.01 0.9990389161 0.9990393784 0.9990399715
0.001 0.9998268459 0.9998269033 0.9998269795
0.0001 0.9999526577 0.9999526560 0.99995265379

0
4
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Table III. Comparison of L2 norm of Example 4.1 with results from [6].

Mixed finite difference and Galerkin methods [6]

˛ � tD 0.1 tD 0.2 tD 0.25 tD 0.1 tD 0.2 tD 0.25

0.1 0.01 3.06� 10�4 6.12� 10�4 7.64� 10�4 3.06� 10�4 6.11� 10�4 7.62� 10�4

0.001 3.08� 10�6 6.37� 10�6 7.98� 10�6 3.10� 10�6 6.32� 10�6 7.99� 10�6

0.0001 3.40� 10�8 8.80� 10�8 1.34� 10�7 7.15� 10�7 1.31� 10�6 1.67� 10�6

1 0.01 3.06� 10�5 6.12� 10�5 7.64� 10�5 3.06� 10�5 6.11� 10�5 7.62� 10�5

0.001 3.08� 10�7 6.37� 10�7 7.98� 10�7 3.10� 10�7 6.32� 10�7 7.99� 10�7

0.0001 3.40� 10�9 8.80� 10�9 1.34� 10�8 2.24� 10�8 5.22� 10�8 8.94� 10�8

Table IV. Minimum eigenvalue of the matrix QM1, for Example 4.1.

˛ � tD 0.3 tD 0.6 tD 1.0

0.1 0.01 0.9654916 0.9654545 0.9654076
0.001 0.5613544 0.5613486 0.5613407
0.0001 0.4614543 0.4614541 0.4614538

1 0.01 0.9654916 0.9654545 0.9654076
0.001 0.5613544 0.5613486 0.5613407
0.0001 0.4614543 0.4614541 0.4614538

Figure 1. Absolute error (left) and comparing the exact and approximate solutions (right) for Example 4.1 with r D 3, n D 2, ˛ D 1, � D 0.0001, c D 0.01 in

Œ�3, 3� and tD 1.

with the solitary wave solutions [6]

u.x, t/D A
h

9� 6 tanh.B.x � Ct//� 3 tanh2.B.x � Ct//
i

, (4.4)

in the region DD fx : 0< x < 1g; AD �2

25�� , BD �
10� , C D 6�2

25� , 	, � and � are arbitrary constants.

Table V, shows L1 and L2 errors for r D 5, n D 2, and various values of �, � , and 	. Table VI contains the spectral radius of the

matrix QM4 QM�1
3 for different values of t. The minimum eigenvalue of matrices QM3 for various values of 	, � ,�, and different values of t, is

reported in Table VII. Figure 2 demonstrates the plot of absolute error and the plot of exact and approximate solutions.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 894–912
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Table V. L1 and L2 errors for various values of 	 and � for Example 4.2.

L2Error L1Error L1Error [6]

	 � � tD 0.3 tD 0.9 tD 0.3 tD 0.9 tD 0.3 tD 0.9

1 0.1 0.1 1.28� 10�12 2.39� 10�12 3.71� 10�12 7.51� 10�12 8.20� 10�8 2.26� 10�7

0.1 1.0 7.66� 10�19 1.63� 10�18 2.56� 10�19 4.83� 10�19 1.07� 10�8 6.31� 10�8

0.1 0.1 0.1 1.28� 10�11 2.39� 10�11 3.71� 10�11 7.51� 10�11 8.27� 10�7 2.27� 10�6

0.1 1.0 2.56� 10�18 4.83� 10�18 3.00� 10�18 1.63� 10�17 2.01� 10�7 5.92� 10�7

Table VI. Spectral radius of the matrix QM4 QM�1
3 for Example 4.2.

	 � � tD 0.3 tD 0.9

1 0.1 0.1 0.9997969093 0.9997968536
0.1 1.0 0.9999031714 0.9999031526

0.1 0.1 0.1 0.9997969093 0.9997968549
0.1 1.0 0.9999031639 0.9999031526

Table VII. Minimum eigenvalue of the matrix QM3 for Example 4.2.

	 � � tD 0.3 tD 0.9

1 0.1 0.1 1.03610780 1.036107967
0.1 1.0 1.36545996 1.36545999

0.1 0.1 0.1 1.03610797 1.03610803
0.1 1.0 1.36545999 1.36545999

Figure 2. Absolute error (left) and comparing the exact and approximate solutions (right) for Example 4.2 with � D 0.1, � D 0.1, and � D 1 using r D 5 and

nD 2 in tD 1.

Example 4.3
Consider the coupled Burgers Equations (1.7) which the boundary and initial values are given by the exact solution. For this example,
exact solutions are given [7] as

8̂̂<
ˆ̂:

u.x, t/D a0 � 2A
�

2˛�1
4˛ˇ�1

	
tanh ŒA.x � 2At/�,

v.x, t/D a0
2ˇ�1
2˛�1 � 2A

�
2˛�1

4˛ˇ�1

	
tanh ŒA.x � 2At/�,

a < x < b,

with AD 1
2

�
a0.4˛ˇ�1/

2˛�1

	
, a0, ˛ and ˇ are arbitrary constants.9

0
6
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Table VIII, shows the L1 errors with a0 :D 0.05, ˛ D 1.0 and ˇ D 0.3 at time levels t D 0.5 and 1 and compares the L1 error of
Example 4.3 with results from [6, 7]. Table IX, shows the spectral radius of the matrix QM6 QM�1

5 for different values of t. In Table X, we
compare L1 error of Example 4.3 with results from [6] with a0 :D 0.05, ˛ D 0.1 and ˇ D 0.3 at time levels tD 0.5 and 1. Table XI, reports
the minimum eigenvalue of matrices QM5 for different values of t. Figure 3 demonstrates the plot of absolute errors. Figure 4 shows the
exact and approximation solutions at tD 1.

Table VIII. Comparison of norm infinity of Example 4.3 with results from [6, 7] for a0 :D 0.05, ˛ D 1.0, ˇ D 0.3, aD 0 and bD 1.

Ł1 Error for mixed finite difference and Galerkin methods L1 Error for method [6] L1 Error for method [7]

tD 0.5 tD 1.0 tD 0.5 tD 1.0 tD 0.5 tD 1.0

u 2.47� 10�6 2.49� 10�6 8.81� 10�6 8.82� 10�6 3.70� 10�6 3.73� 10�6

v 4.04� 10�7 4.07� 10�7 2.86� 10�6 2.86� 10�6 8.91� 10�7 8.98� 10�7

Table IX. Spectral radius of the matrix QM6 QM�1
5 , for

Example 4.3.

tD 0.5 tD 1.0

u 0.9128635979 0.9128635921
v 0.9129552052 0.9129551996

Table X. Comparison of norm infinity of Example 4.3 with results from method presented in [6] for
a0 :D 0.05, ˛ D 0.1, ˇ D 0.3, aD�10, and bD 10.

Mixed finite difference and Galerkin methods Method [6]

tD 0.5 tD 1.0 tD 0.5 tD 1.0

u 4.23� 10�5 8.28� 10�5 4.38� 10�5 8.66� 10�5

v 2.51� 10�5 4.78� 10�5 4.99� 10�5 9.92� 10�5

Table XI. Minimum eigenvalues of the matrices QM5

and QM7 for Example 4.3.

tD 0.5 tD 1.0

u 1.04098615 1.04098317
v 1.04165094 1.04165095

Figure 3. Absolute errors for mixed finite difference and Galerkin methods for Example 4.3 with a0 D 0.05, ˛ D 0.1, and ˇ D 0.3 with r D 4, nD 2. left .u/ and

right .v/.
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Figure 4. Exact and approximation solutions for Example 4.3 a0 D 0.05, ˛D 0.1, and ˇ D 0.3 with rD 4, nD 2. left .u/ and right .v/.

Table XII. Comparison of the numerical results for � D 1 for Example 4.4.

Method t x D 0.1 x D 0.3 x D 0.5 x D 0.7 x D 0.9

IFDM 0.05 0.17832 0.47658 0.60984 0.51165 0.20006
BEM 0.17759 0.47531 0.60851 0.51050 0.19933
MFDGM 0.17788 0.47555 0.60969 0.51105 0.19990
Exact 0.17803 0.47586 0.60907 0.51113 0.19989

IFDM 0.1 0.11009 0.29335 0.37342 0.31144 0.12128
BEM 0.10931 0.29124 0.37070 0.30911 0.12031
MFDGM 0.10946 0.29167 0.37169 0.30966 0.12059
Exact 0.10954 0.29190 0.37158 0.30991 0.12069

IFDM 0.2 0.04273 0.11276 0.14120 0.11574 0.04457
BEM 0.04220 0.11044 0.13809 0.11322 0.04391
MFDGM 0.04187 0.11046 0.13828 0.11328 0.04361
Exact 0.04193 0.11062 0.13847 0.11347 0.04369

IFDM, implicit finite difference method; BEM, boundary element method; MFDGM, mixed finite difference and Galerkin methods.

Table XIII. Comparison of the numerical results for Example 4.4 with � D 0.1.

Method t x D 0.1 x D 0.3 x D 0.5 x D 0.7 x D 0.9

IFDM 0.5 0.11048 0.32367 0.50447 0.57664 0.30912
BEM 0.10986 0.32191 0.50240 0.57514 0.30779
MFDGM 0.11379 0.32441 0.51059 0.57666 0.30964
Exact 0.10992 0.32219 0.50279 0.57585 0.30935

IFDM 1 0.06689 0.19445 0.29448 0.31107 0.14769
BEM 0.06644 0.19263 0.29139 0.30711 0.14507
MFDGM 0.06802 0.19503 0.29717 0.30953 0.14697
Exact 0.06632 0.19279 0.29192 0.30809 0.14607

IFDM 2 0.02909 0.08044 0.10939 0.09838 0.04037
BEM 0.02913 0.07951 0.10770 0.09663 0.03976
MFDGM 0.02904 0.08020 0.10956 0.09828 0.04119
Exact 0.02876 0.07946 0.10789 0.09685 0.03969

IFDM, implicit finite difference method; BEM, boundary element method; MFDGM, mixed finite difference and Galerkin methods.
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Table XIV. Minimum eigenvalue of the matrix QM1 for Example 4.4.

� tD 0.05 tD 0.1 tD 0.2
1 0.00409012 0.00407345 0.00405001

tD 0.5 tD 1 tD 2
0.1 0.03465394 0.01916844 0.03175529

Figure 5. Numerical solution at different times for � D 0.1 for Example 4.4.

Figure 6. Numerical solution at different times for � D 1 for Example 4.4.

Example 4.4
In this example, we solve the 1-D Burgers equation with different initial and boundary conditions as

u.x, 0/D sin.�x/, 0< x < 2,

u.0, t/D u.1, t/D 0, t > 0.

The exact solution of this equation is

u.x, t/D
2��

P1
nD1 an exp.�n2�2�t/n sin.n�x/

a0C
P1

nD1 an exp.�n2�2�t/ cos.n�x/
,

where the Fourier coefficients are

a0 D

Z 2

0
exp

n
�.2��/�1.1� cos.�x//

o
dx,

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 894–912
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Figure 7. Numerical solution at time 0.1 and different � D .0.2, 0.4, 0.6, 0.8, 1, 2/ for Example 4.4.

and

an D 2

Z 2

0
expf�.2��/�1.1� cos.�x//gcos.n�x/dx, .nD 1, 2, � � � /.

Comparisons are made with exact and numerical solutions of several existing numerical schemes, which are fully implicit finite dif-
ference method [71], the mixed finite difference and boundary element methods [72]. The numerical results are presented in Tables XII
and XIII for different times and different � coefficient. In Table XIV, we show the minimum eigenvalue of matrix QM1 for different values
of � and t. When the � is fixed, the numerical solutions at different times are plotted in Figures 5 and 6. We also fix the time and show
the numerical simulation with different values of � in Figure 7. It can be seen that the dissipation effect increases with increasing � . In
all calculations related to the figures, the interval Œ0, 2� is divided into 200 cells equally.

5. Conclusion

In this article, the 1-D Burgers and KdV–Burgers and the coupled Burgers equations are studied. A numerical method is proposed to
find their solutions. This hybrid method uses the finite difference scheme and Galerkin technique based on the interpolating scaling
functions (ISFs). The stability of the technique is discussed in some cases. The new procedure was tested on several examples taken
from the literature. Numerical simulations are reported to demonstrate the usefulness of the new method proposed in the current
work.
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33. Molinet L, Ribaud F. The Cauchy problem for dissipative KortewegŰ-de Vries equations in Sobolev spaces of negative order. Indiana University

Mathematics Journal 2001; 50(4):1745–1776.
34. Helal MA, Mehanna MS. A comparison between two different methods for solving KdV–Burgers equation. Chaos Solitons Fractals 2006; 28:320–326.
35. Kaya D. An explicit solution of coupled viscous Burgers equation by the decomposition method. International Journal of Mathematics and

Mathematical Sciences 2001; 27:675–680.
36. Özis T, Esen A, Kutluay S. Numerical solution of Burgers’ equation by quadratic B-spline finite elements. Applied Mathematics and Computation 2005;

165:237–249.
37. Shamsi M, Dehghan M. Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method.

Numerical Methods for Partial Differential Equations 2012; 28:74–93.
38. Khater AH, Temsah RS. Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods. International Journal

of Computer Mathematics 2007; 84:305–316.
39. Esipov SE. Coupled Burgers equations: a model of polydispersive sedimentation. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 1995;

52:3711–3718.
40. Nee J, Duan J. Limit set of trajectories of the coupled viscous Burgers equations. Applied Mathematics Letters 1998; 11(1):57–61.
41. Hu Y. Asymptotic nonlinear stability of traveling waves to a system of coupled Burgers equations. Journal of Mathematical Analysis and Applications

2013; 397:322–333.
42. Hosseinzadeh H, Dehghan M, Mirzaei D. The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann

numbers. Applied Mathematical Modelling 2013; 37:2337–2351.
43. Yanase S. New one–dimensional model equations of magnetohydrodynamic turbulence. Physics of Plasmas 1997; 4:1010–1017.
44. Fleischer J, Diamond PH. Burgers’ turbulence with self-consistently evolved pressure. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics

2000; 61:3912–3925.
45. Fleischer J, Diamond PH. Instantons and intermittency in 1-D MHD Burgerslence. Physics Letters A 2001; 283:237–242.
46. Lahiri R, Ramaswamy S. Are steadily moving crystals unstable? Physical Review Letters 1997; 79:1150–1153.
47. Vahala L, Vahala G, Yepez J. Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence.

Physics Letters A 2003; 306:227–234.
48. Civalek Ö. Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of

rectangular plates on elastic foundation. Journal of Sound and Vibration 2006; 294:966–980.
49. Wei GW, Gu Y. Conjugate filter approach for solving Burgers’ equation. Journal of Computational and Applied Mathematics 2002; 149(2):439–456.
50. Salehi R, Dehghan M. A method based on meshless approach for the numerical solution of the two–space dimensional hyperbolic telegraph

equation. Mathematical Methods in the Applied Sciences 2012; 35:1220–1233.
51. Shokri A., Dehghan M. A Not-a-Knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of

improved Boussinesq equation. Computer Physics Communications 2010; 181:1990–2000.
52. Dehghan M, Hamidi A, Shakourifar M. The solution of coupled Burgers equations using Adomian–Pade technique. Applied Mathematics and

Computation 2007; 189:1034–1047.
53. Rashid A, Ismail AIB. A Fourier Pseudospectral method for solving coupled viscous Burgers equations. Computational Methods in Applied Mathematics

2009; 9(4):412–420.
54. Dehghan M, Fakhar–Izadi F. The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising

in modeling of nonlinear waves. Mathematical and Computer Modelling 2011; 53:1865–1877.
55. Dehghan M, Shakeri F. Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational

iteration technique. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:705–715.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 894–912

9
1

1



M. DEHGHAN, B. N. SARAY AND M. LAKESTANI

56. Dehghan M, Salehi R. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Computer Physics Communications 2010;
181:1255–1265.

57. Abdou MA, Soliman AA. Variational iteration method for solving Burger’s and coupled Burger’s equations. Journal of Computational and Applied
Mathematics 2005; 181:245–51.

58. Abazari R, Borhanifar A. Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method.
Computers & Mathematics with Applications 2010; 59:2711–2722.

59. Inan IE, Kaya D, Ugurlu Y. Auto–Backlund transformation and similarity reductions for coupled Burger’s equation. Applied Mathematics and
Computation 2010; 216:2507–2511.

60. Mittal RC, Arora G. Numerical solution of the coupled viscous Burgers’ equation. Communications in Nonlinear Science and Numerical Simulation 2011;
16:1304–1313.

61. Dehghan M. A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numerical Methods
for Partial Differential Equations 2006; 22:220–257.

62. Shamsi M, Razzaghi M. Solution of Hallen’s integral equation using multiwavelets. Computer Physics Communications 2005; 168:187–197.
63. Lakestani M, Saray BN. Numerical solution of telegraph equation using interpolating scaling functions. Computers & Mathematics with Applications

2010; 60:1964–1972.
64. Dehghan M, Saray BN, Lakestani M. Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes

for the numerical solution of the nonlinear generalized Burgers–Huxley equation. Mathematical and Computer Modelling 2012; 55:1129–1142.
65. Shamsi M, Razzaghi M. Numerical solution of the controlled duffing oscillator by the interpolating scaling functions. Journal of Electromagnetic

Waves and Applications 2004; 18(5):691–705.
66. Shakeri F, Dehghan M. The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition.

Computers & Mathematics with Applications 2008; 56:2175–2188.
67. Rubin SG, Graves Jr. RA. Cubic Spline Approximation for Problems in Fluid Mechanics. NASA TR R-436: Washington, DC, 1975.
68. Rubin SG, Khosla PK. Higher-order numerical solutions using cubic splines. American Institute of Aeronautics and Astronautics 1976; 14:851–858.
69. Rubin SG, Graves, Jr. RA. Viscous flow solutions with a cubic spline approximation. Computers and Fluids 1975; 3:1–36.
70. Alpert B, Beylkin G, Gines D, Vozovoi L. Adaptive solution of partial differential equations in multiwavelet bases. Journal of Computational Physics

2002; 182:149–190.
71. Bahadir AR. Numerical solution for one-dimensional Burgers’ equation using a fully implicit finite difference method. International Journal of Applied

Mathematics 1999; 8:897–909.
72. Bahadir AR, Saglam M. A mixed finite difference and boundary element approach to one-dimensional Burgers’ equation. Applied Mathematics and

Computation 2005; 160:663–673.

9
1

2

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 894–912


