

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE: STA 324

COURSE TITLE: STATISTICAL COMPUTING

DATE: 22/11/2022 TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

a)

Briefly describe how you can carry out the following procedure using SPSS

- (i) Descriptive
- (ii) Explore
- (iii) Cross-tabulation

(9mks)

- b) List with details ,three compulsory and five optional requirements in creating a data file in SPSS (8 mks)
- c) Income can be measured on several levels. Describe how income could be measured as an ordinal, interval and ratio measure. (6 mks)
- d) Which of the following variable names will SPSS accept, and which will SPSS reject? For those that SPSS will reject, how could you change the variable name to make it "legal"?
 - (i) Age
 - (ii) firstname
 - (iii) @edu
 - (iv) sex.

(7 mks)

QUESTION TWO (20 MARKS)

The SPSS output sheets for this question shows a cross tabulation of the variables SEX (gender) and Illegal Drugs (Marijuana, Cocaine), taken from a random sample of Americans. Both variables are coded as shown in the table. Using the information presented to you, do the following:

Respondent's Sex * Illegal Drugs (Marijuana, Cocaine) Cross tabulation

Count

Count				
le le		Illegal Drugs (Marijuana, Cocaine)		Total
		Yes	No	
Respondent's Sex	Male	23	393	416
respondence cox	Female	7	589	596
Total		30	982	1012

Chi-Square Tests

On-oquare rests						
	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)	
Pearson Chi-Square	16.149ª	1	.000			
Continuity Correction ^b	14.670	1	.000			
Likelihood Ratio	16.190	1	.000			
Fisher's Exact Test				.000	.000	
Linear-by-Linear Association	16.133	1	.000			
N of Valid Cases	1012					

Symmetric Measures

		Value	Asymp. Std. Error ^a	Approx. Tb	Approx. Sig.
Interval by Interval	Pearson's R	.126	.029	4.047	.000
Ordinal by Ordinal	Spearman Correlation	.126	.029	4.047	.000°
N of Valid Cases		1012			

- a. Not assuming the null hypothesis.
- b. Using the asymptotic standard error assuming the null hypothesis.
- c. Based on normal approximation.
 - a. Identify the independent and dependent variable.
 - b. State a plausible research hypothesis for these two variables.
 - c. State the null hypothesis.
 - d. Test the null hypothesis and make a decision, reporting the information you used to make that decision.
 - (e) Interpret the results

QUESTION THREE (20 MARKS)

- a) Suppose you have the following Research Question
 - To what extent does weight of a car in pounds predict miles per gallon in a U.S. dataset of 398 models of cars?
- i) Are the two variables discrete or continuous?
- ii) Are the two variables nominal, ordinal, interval or ratio scales?
- iii) Which statistical procedure could we use to test the research question?
- iv) What is the null hypothesis?
- v) What is your expectation?
- b) The regression SPSS output of the above question was as below. Use it to answer the following questions

Model Summary

Model R	R	R Square	Adjusted R Square	Std. Error of the Estimate	
1	.807 ^a	.651	.650	4.622	

a. Predictors: (Constant), Vehicle Weight (lbs.)

ANOVAb

Madel	Sum of Squares	-15	Mean Square	F	Sig000 ^a	
Model	Regression	15794.632	1	15794.632	739.503	.000
1	Residual	8457.943	396	21.358		
		24252.575	397			

a. Predictors: (Constant), Vehicle Weight (lbs.)

b. Dependent Variable: Miles per Gallon

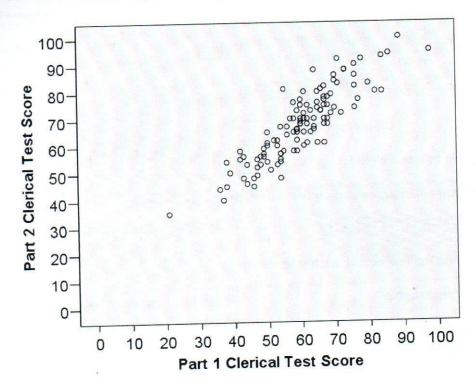
Coefficients

	_	OCITIOIS			
		dardized cients	Standardized Coefficients		0:
	В	Std. Error	Beta	t	Sig. .000
Model	45,492	.841		54.110	
1 (Constant) Vehicle Weight (lbs.)		.000	807	-27.194	.000

a. Dependent Variable: Miles per Gallon

- i) How much variance in Miles Per Gallon is explained by Car Weight?
- ii) Is this variance explained significantly different to 0?
- iii) What is the constant
- iv) What is the slope?
- v) Is the slope statistically significant?
- vi) Write out the model regression equation
- vii) What is the standardised regression coefficient for vehicle weight?
- viii) If a car weighed 1000 pounds, what would be the predicted miles per gallon?

- ix) What is the standard error of the estimate?
- x) What would be the approximate 95% confidence interval of our prediction


QUESTION FOUR (20 MARKS)

Sample questionnaire
1. Sex Male Female
2. Age in years
3. Education level (please indicate the highest level of schooling that you completed)
Year 10 Year 12 University or College
4. Are you currently on a diet to lose weight? Yes No
Please indicate how much you either agree or disagree with each of the following
statements.
Write a number from 1 to 4 on the line next to each statement.
strongly disagree 1 2 3 4 strongly agree
1 I have little control over the things that happen to me
2 I can do just about anything I really set my mind to
3 There is really no way I can solve some of the problems I have
4 There is little I can do to change many of the important things in my life
5 What happens to me in the future mostly depends on me
6 I often feel helpless in dealing with the problems of life
7 Sometimes I feel that I'm being pushed around in life

- a) Prepare a codebook for this questionnaire, detailing each of the variable names and codesto be used to prepare the data for entry into SPSS.
- b) Using the codebook you developed, describe how you would create value labels for Question 3 (Education level). Describe the steps you would use in SPSS.
- c) Using SPSS, create a new data file for this questionnaire. Enter some pretend data in this data file (for at least five cases).

QUESTION FIVE: (20 MARKS)

Consider the following SPSS output

53)

Correlations

		PSA: Clerical Speed Adjusted Total Part 2	PSA: Clerical Speed Adjusted Total Part 1
PSA: Clerical Speed	Pearson Correlation	1	.882
Adjusted Total Part 2	Sig. (2-tailed)		.000
	Sum of Squares and Cross-products	19759.948	16207.026
	Covariance	173.333	142.167
	N	115	115
PSA: Clerical Speed	Pearson Correlation	.882	1
Adjusted Total Part 1	Sig. (2-tailed)	.000	
	Sum of Squares and Cross-products	16207.026	17072.487
	Covariance	142.167	149.759
	N	115	115

- i) Looking at the scatterplot, describe the relationship in terms of direction, form, and degree.
- ii) What is the largest absolute value a correlation can take?
- iii) Can we justifiably say that part 1 test score caused their part 2 test score?
- iv) The sample was made up of roughly 25% first year psychology students and 50% friends of one of the researchers typically aged around 22 and 25% parents of friends of the researchers, do you think restricted range might be an issue here?
- v) Are there any extreme scores?
- vi) If instead of using the raw scores, we used the rank of each participant, and performed a correlation on these ranks, what type of correlation would we have?
- vii) If we split part 1 scores into high and low groups and correlated it with the raw version of part 2, what type of correlation would we have?
- viii) Is the correlation statistically significant? What is our df, what is critical r (two-tailed) in G&W?