KIBABII UNIVERSITY # SUPPLIMENTARY/ SPECIAL UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022 #### FOURTH YEAR FIRST SEMESTER EXAMINATIONS #### BACHELOR OF SCIENCE **COURSE CODE: SPH 417** COURSE TITLE: SOLID STATE PHYSICS DATE: 22/11/2022 TIME: 11:00AM-1:00PM #### INSTRUCTIONS TO CANDIDATES Answer question ONE and any TWO of the remaining. Time: 2 hours KIBU observes ZERO tolerance to examination cheating ## **QUESTION ONE (30 MARKS)** | The state of s | | |--|---| | a) State any two states of matterb) Differentiate between crystalline and amorphous solidsc) Define the following terms crystals: | (2 marks)
(2 marks) | | (i) Lattice (ii) Basis (iii) Unit cell d) What is an ionic bond e) What is a lattice vibration and how does it occur f) Name any three forces in which metallic bonds depends g) Calculate the distance between two lattice planes which give first order diangle of 26.42° with molybdenum of X-rays of wavelength 0.71Å? h) Using a well labelled diagram, define a face-centred cubic (bcc) unit cell. i) What is an atomic scattering factor? j) State Bragg's law in mathematical form k) Apply Miller indices to sketch (1 0 0) plane | (2 marks). (2 marks) (2 marks) (2 marks) (3 marks) (3 marks) iffraction at an (3 marks) (2 marks) (3 marks) (2 marks) | | QUESTION TWO (20 MARKS) | (2 marks) | | (a) Derive the relationship between phase velocity and group velocity(b) Discuss the important properties of metal crystals | (12 marks)
(8marks) | | QUESTION THREE (20 MARKS) | | | (a) State the Bloch theorem and show how it can be expressed in one dimension (b) A bcc crystal is issued to measure the wavelength of some X-rays. The Brathe first order reflection from (100- planes is 20.2°. What is the wavelength? parameter of the crystal as 3.15 Å | | | QUESTION FOUR (20 MARKS) | , | | (a) Discuss any five assumptions of classical free electron model (b) A sample of silicon is doped with 10¹⁷ phosphorus atoms per cm³. What is the and the expected Hall voltage in a sample of 200μm thickness if the current A/cm² and magnetic field of 1 x 10⁻⁵ Wb/cm² is applied perpendicular to the current flow. Given mobility = 600 cm²/volt.sec) | | #### **QUESTION FIVE (20 MARKS)** - (a) What is Hall effect? An n-type semi-conductor (Ge) has a donor density of 10^{15} /cm³. It is arranged in a Hall effect experiment where magnetic field $B_Z = 0.5$ Wb/m² is applied and a current density of $j_x = 500$ A/m² results. What will be the Hall voltage if the specimen is 4 mm thick? (8 marks) - (b) Calculate the extent of energy range between $f(\epsilon) = 0.9$ and $f(\epsilon) = 0.1$ at temperature T= 200K and express it as a function of $\epsilon_f = 3$ eV. (12 marks)