

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

COURSE CODE:

MAP312

COURSE TITLE:

LINEAR ALGEBRA III

DATE: 22/11/2022

TIME: 11 AM -1 PM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define the following:
- (3 marks) A quadratic function on V.
- (10 marks) a) Show that if matrix A is Hermitian, then all the eigenvalues of A are real.
- b) Show that matrix $A = \begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix}$ is a nilpotent matrix of index 2. (4 marks)
- (5 marks) c) Outline any five applications of finite vector spaces.
- d) Given that v = (1 + 2i, 3-i) and u = (-2 + i, 4) are vectors in the complex vector space C^2 , (4 marks) determine the vector 3v-(5-i) u.
- e) Show if the matrix $A = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}$ of index 2 is nilpotent or not. (4 marks)

QUESTION TWO (20 MARKS)

- a) Define the terms:
 - (2 marks) Hermitian matrix. (2 marks) (i)
 - Symmetric matrix. (ii) (2 marks)
 - Nilpotent matrix. (iii)
- b) Show that $S = \{(i, 0, 0), (i, i, 0), (0, 0, i)\}$

where $v_{1} = (i, 0, 0)$

$$v_{2} = (i, i, 0)$$

$$v_{3} = (0, 0, i)$$

is a basis for C^3 .

$$A = \begin{bmatrix} 1 & -2 - i & 5 \\ 1 + i & i & 4 - 2i \end{bmatrix}$$
 (4 marks)

(10 marks)

QUESTION THREE (20 MARKS)

a) Define t	he terms:
-------------	-----------

- (i) Jordan block. (2 marks)
- (ii) Jordan form. (2 marks)
- (iii) Jordan chain. (2 marks)
- b) Determine the Jordan form of the operator represented by the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -1 \\ -4 & 13 & -3 \end{pmatrix}$$
 (7 marks)

c) Show that if (V, q) is a quadratic form over $F = F_2$ and that dim $V \ge 4$, there exists a Vector $v \in V$ with q(v) = 0. (7 marks)

QUESTION FOUR (20 MARKS)

- a) Define the following:
 - (i) Eigenvalue and eigenvector. (3 marks)
 - (ii) Determinant of a matrix. (2 marks)
 - (iii) Trace of a matrix. (2 marks)
- b) Given the following 2×2 matrix $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, find its eigen equation. (10 marks)
- c) Given that A is a real matrix with a complex eigenvalue $\lambda = \mu + i\nu$ and corresponding eigenvector $\nu = x + iy$, find the complex conjugate λ and the complex conjugate eigenvector. (3 marks)

QUESTION FIVE (20 MARKS)

- a) Define the following:
 - (i) Bilinear form over F. (2 marks)
 - (ii) B-Orthogonal compliment. (2 marks)
 - (iii) An isometry. (4 marks)
 - (iv) Tensor product. (2 marks)
- b) Show that if matrix A is Hermitian, then any two eigenvectors from different eigenspaces are orthogonal in the standard inner product for \mathbb{C}^n , (\mathbb{R}^n , If A is real symmetric).

(10 marks)