

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTERS (PHYSICS)

COURSE CODE:

SPH 810

COURSE TITLE:

CLASSICAL MECHANICS

DURATION: 2 HOURS

DATE: 15/12/2022

TIME: 8-10AM

INSTRUCTIONS TO CANDIDATES

Answer any three (3) Questions.

- Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page

This paper consists of 2 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [20 Marks]

- a) Define Hamilton's principle of least action and explain it [2Marks] b) Prove that; $-\dot{p}_i = \frac{\partial H}{q_i}$; $\dot{q}_i = \frac{\partial H}{p_i}$; [6Marks]
- c) The Lagrangian for a mass m moving in an inverse-square central force field with characteristic coefficient μ is given by; $L(r,r,\theta,\dot{\theta}) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{\mu m}{r}$. Determine;
 - i) The generalized momenta [2Marks]
 - ii) The Hamiltonian [6Marks]
 - iii) The Hamilton's equations of motion [4Marks]

OUESTION TWO [20 Marks]

- a) What is the main problem of calculus of variation? [2 Marks]
- b) Show that the shortest distance between two points in a plane is a straight line the two joints
- c) Derive an expression for the brachistochrome problem [9 Marks]

QUESTION THREE [20 Marks]

- a) The Hamiltonian of a physical system is given by;
 - $H = \omega^2 p(q+t)^2$. Where ω is a constant.
- Determine q as a function of time b) Prove that the following transformation is canonical;

Prove that the following transformation is canonical,
$$P = \frac{1}{2}(p^2 + q^2); Q = tan^{-1}(\frac{q}{p})$$
[8 Marks]

QUESTION FOUR [20 Marks]

a) A bead with mass m slides under gravity on a frictionless wire in the shape of a 3-D spiral such that its position in cylindrical coordinates (r, θ, ϕ) is given by;

 $r=a\varphi; z=b\varphi^2$); where a and b are constants. The kinetic energy of the bead is $T=\frac{m}{2}(r^2+r^2\varphi^2+z^2)$ and its potential energy is U=mgz.

- i) Considering the polar angle φ as the generalized coordinates; obtain the Lagrangian of the problem

 [4 Marks]

 [6 Marks]
- ii) Obtain the Lagrange equation for the bead

 b) Set up the Lagrangian of a simple pendulum and obtain an equation describing its motion

 [10Marks]

QUESTION FVE [20 Marks]

a) Using the action-angle formalism, proof that the frequency, ν of a simple one-dimensional harmonic oscillator is given by; [4Marks]

$$v = \frac{\sqrt{k/m}}{2\pi}$$

b) Write the Hamiltonian for the 1-dimensional harmonic oscillator of mass, m [4Marks

c) Write the corresponding Hamilton-Jacobi equation in (b) above

[2Marks]

d) Use the Hamilton-Jacobi equation method to obtain the motion of the oscillator

[10Marks]

THE LAST PRINTED PAGE