

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE: MAA 313

COURSE TITLE: FLUID MECHANICS I

DATE: 15/12/2022 TIME: 2:00 PM - 4: 00PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) Distinguish between the following as used in fluid mechanics;
 - (i) Viscous fluid and Inviscid fluid (2mks)
 - (ii) Irrotational and rotational flow (2mks)
- (b) State the first law of Thermodynamics (2mks)
- (c) A liquid compressed in a cylinder has a volume of $0.4cm^3$ at a pressure of $6.8 \times 10^7 \, N/cm^2$ and volume of $0.396cm^3$ at a pressure of $1.36 \times 10^8 \, N/cm^2$. Calculate the Bulk modulus of the fluid. (4mks)
- (d) Prove that for adiabatic process, $P\rho^{-\gamma} = a$ constant, where $\gamma = C_P / C_V$ (8mks)
- (e) Determine the dimension of the coefficient of viscosity (3mks)
- (f) Show whether or not the continuity equation is satisfied given the following;

$$u = x^3 - y^3 - z^3 x$$
, $v = y^3 - x^3$, $w = -3x^2z - 3y^2z + z^3$ (4mks)

(g) The velocity along streamline is given by v = (2s + t + 1)m/s. Find the acceleration and velocity at s = 2m after 1s (5mks)

QUESTION TWO (20 MARKS)

(a) Determine which of the velocity component sets given below satisfy the equation of continuity;

$$(i) u = A \sin(xy), \quad v = -A \sin(xy)$$
(3mks)

(ii)
$$u = x + y$$
, $v = x - y$ (3mks)

(iii)
$$u = 2x^2 + 3y$$
, $v = -2xy + 3y^3 + 3zy$, $v = -\frac{3}{2}z^2 - 2xz - 6yz$ (4mks)

(b) Find the equation of the streamline given that $u = \frac{-K^2y}{x^2 + y^2}$; $v = \frac{K^2x}{x^2 + y^2}$ (10mks)

QUESTION THREE (20 MARKS)

Test whether the motion specified by $\overrightarrow{q} = \frac{K^2(xj - yi)}{x^2 + y^2}$, with K as a constant,

(a) Is a possible motion for an incompressible fluid

(5mks)

(b) Test whether the motion is of the potential kind, hence or otherwise determine the velocity potential (15mks)

QUESTION FOUR (20 MARKS)

(a) Prove that $C_P - C_V = R$ where R is a gas constant.

(8mks)

(b) The velocity of a point in a fluid for a 1-D flow may be given in Eulerian co-ordinates by u = Ax + Bt where A and B are constants. Find the displacement of a fluid particle in Langrangian system given that the initial conditions are $x = x_o$, $t = t_o = 0$ may be assumed.

(12mks)

QUESTION FIVE (20 MARKS)

(a) Find the velocity component of a fluid particle when the velocity distribution is given by

$$\overrightarrow{q} = i(Ax^2y) + j(By^2zt) + k(czt^2)$$
(5mks)

(b) Given that
$$u = \frac{ax - by}{x^2 + y^2}$$
; $v = \frac{ay + bx}{x^2 + y^2}$; $w = 0$

(i) Investigate the nature of the fluid motion.

(10mks)

(ii) Show that the velocity potential is given by $\Phi = -\left\{\frac{a}{2}\ln(x^2 + y^2) + b\tan^{-1}\left(\frac{y}{x}\right)\right\}$

(5mks)