KIBABII UNIVERSITY #### UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR # SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF B.E.D (SCIENCE) COURSE CODE: **SPH 217** COURSE TITLE: INTRODUCTION TO ELECTRICITY AND **MAGNETISM** **DATE**: 15/12/022 **TIME**: 2:00-4:00PM INSTRUCTIONS TO CANDIDATES TIME: 2 Hours Answer question ONE and any TWO of the remaining KIBU observes ZERO tolerance to examination cheating ### **QUESTION ONE (30 marks) compulsory** | a) State and briefly discuss Coulomb's law b) Outline three conditions for validity of coulomb's law c) Define the term electric field and state its SI unit d) State any three applications of magnets e) Outline the properties of electrostatic field lines f) State Gauss law g) Define the term electric flux and state its equation h) What are ferromagnetic materials? State any two uses of ferromagnet i) Given three charges q₁, q₂ and q₃ having charge 6C, 5C and 3C enclosed j) Outline three properties of magnets | (3mks) (3maks) (2mks) (3mks) (6mks) (1mk) (2mks) tic materials (3mks) osed in a surface. (4mks) (3mks) | |---|--| | QUESTION TWO (20 marks) | | | (a) A charge of 4 x 10⁻⁸ is distributed uniformly on the surface of a sphere covered by a concentric hollow conducting sphere of radius 5cm. (i) Find the electric field at a point 2cm away from the centre (ii) A charge of 6 x 10⁻⁸ C is placed on the hollow sphere. Find density on the outer surface of the hollow sphere. | (6mks) | | (b) Consider a thin spherical shell of surface charge density, σ, and radi the shell is symmetrical, determine the electric field: (i) Outside the spherical shell (ii) Inside the spherical shell | (7mks)
(3mks) | | QUESTION THREE (20 marks) | | | Discuss magnetic materials and their uses | (20mks) | | | | #### **QUESTION FOUR (20 marks)** (a) Define the term capacitance (b) Show that the capacitance is given by, C = Akε/a where k is the dielectric constant, A is area of overlap and d is the distance of separation between the plates (8mks) (c) Proof that the effective capacitance for three capacitors in parallel arrangement is given by: C_T = C₁ + C₂ + C₃, where C_T is the effective/total capacitance and C₁, C₂ and C₃ are individual capacitances of capacitors in parallel network. (4mks) (d) A 12μF capacitor is charged with 200V source then placed in parallel with uncharged 8.0μF - (i) The initial charge on the 12μ F capacitor. (3marks) - (ii) The final charge on each capacitor. (4marks) #### **QUESTION FIVE (20 marks)** (a) State Gauss' law (1mk) (b) Show that the electric flux of charge Q over a closed spherical surface of radius R is: $$\Phi_E = \frac{Q}{\varepsilon_0} \tag{8mks}$$ - (c) Consider an ink particle of mass m carrying charge q (q<0). Assuming that the mass of the ink drop is small, determine its y deflection (5mks) - (d) Consider a uniformly-charged ring with charge density λ . By considering a point P at a distance z from the centre of the ring, show that the electric potential exists between them and is given by: $$V = \frac{Q}{4\pi\varepsilon_0|z|} \tag{6mks}$$