

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR SECOND YEAR FIRST SEMISTER EXAMINATION FOR THE DEGREE

OF

BACHELOR OF SCIENCE (CHEMISTRY)

COURSE CODE: SCH 211./214*

COURSE TITLE: ATOMIC STRUCTURE AND CHEMICAL BONDING

INSTRUCTION: ANSWER ALL QUESTIONS

DATE: 20/12/2022

TIME: 2:00-4:00PM

This paper contains 4 printed pages

(MAIN EXAM)

Plank's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light(in vacuum), $c = 2.998 \times 10^8 \text{ms}^{-1}$

Rydberg's constant, R_H= 1.0968 x10⁷ m⁻¹

Mass of electron, $m_e = 9.11 \times 10^{-31} \text{kg}$

 $1A=10^{-10}$ m and 1J=1 kgm²s⁻²

Electronic charge, $e = 1.602 \times 10^{-19} C$

Permittivity, ξ_0 =8.854188 x 10⁻¹² C²/Jm

QUESTION ONE (30MARKS)

- a) Discuss the Rutherfold atomic model (3mks)
- b) Explain the Bohr's model of the atom citing its limitations (4mks)
- c) Calculate the energy of an electron transition from n=4 in the Balmer series for the hydrogen atom predict its colour on spectrum line (2mks)
- e) i) For a particle in a one dimension box, $E_n = \frac{n^2 h^2}{8ma^2}$, m=mass of particle

Calculate the energy difference between n=2 and n=4 levels for an electron confined to a one dimension box having length 1×10^{-10} m in joules (4mks)

- ii) Given that $\Psi = A \sin\left(\frac{n\pi}{a}\right)x$. Sketch the plots for Ψ and Ψ^2 for n=2 for transitions in the box (4mks)
- g) i) Briefly discuss malleability in copper metal (4mks)
 - ii) Why do metals shine when exposed to light (2mks)
- h) State aufbau principles in filling electrons in multielectron atoms (3mks)
- i) What is the difference between a covalent and dative bond. (2mks)
- j) Briefly explain the relationship between screening effects and penetrating effects (2mks)

QUESTION TWO (20 MARKS)

- a) Discuss the following terms
- i) electronegativity and
- ii) electron affinity (4mks)

- b) Explain why SiCl₄ has a lower melting point than SiO₂ (Si= 28, Cl=35.5, O=16) (4mks)
- c) Use CHCH to differentiate between pi (π) and sigma (δ) covalent bonds (4mks)
- d) Draw and identify intramolecular and intermolecular hydrogen bonds on nitrophenol molecule (4mks)
- e) Explain the trend in lattice energy down group 2 oxides (4mks)

QUESTION THREE (20 MARKS)

- a) Calculate the effective nuclear charge (Z_{eff}) for a 3d electron in iron (III) ion (Fe=26) (5mks)
- d) Account for the molecular shape of NH₃ using the VSEPR (4mks)
- e) Give 3 limitations of the valence bond theory (3mks)
- f) Describe the delocalization on benzene molecule, C₆H₆ (4mks)
- g) Draw the resonance structure for CO_3^{2-} (4mks)

QUESTION FOUR (20 MARKS)

- a) Explain why sodium chloride is not reactive whereas both its elements sodium and chlorine are very reactive (5mks)
- b) State 3 characteristics of an ionic compound (3mks)
- c) i) what is polarization (3mks)
- ii) Explain why KI(s) has a higher melting point than LiI (4mks)
- d) A radioactive material emits photons, each having energy of 1.6 x 10⁻¹³J. Calculate the frequency and wavelength of the electromagnetic radiation emitted by the radioactive material (5 mks)

QUESTION 5 (20 MARKS)

a) i) Use the allowed combination (n,l,m) to draw the orbitals in the outermost energy subshell in the table below. (5mks)

n	L	m	Orbital type
3	2	-2	
3	2	-1	
3	2	0	
3	2	1	
3	2	2	

ii) Sketch the p-orbitals

(3mks)

b) State two limitations to the octet rule

(3mks)

- c) Explain why the first ionization energy of B is 801KJ/mole while the one of Be is 899Kj/mole (4mks)
- d) Draw the homonuclear correlation diagram for boron and determine its magnetism (5mks)