

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAT 321/MAA 311

COURSE TITLE: ODE I

DATE:

13/12/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Classify the following differential equations as to order, degree and linearity
 - i) $2(y^{II})^3 3x(y^{III})^2 + 5x = y$ (3 mks)
 - ii) $\frac{d^4y}{dx^4} 7\frac{d^2y}{dx^2} + 6y = 12$ (3 mks)
- b) Show that it is homogeneous and solve the differential equation

$$(x+y)^2 dx + 3xy dy = 0 ag{6 mks}$$

c) Obtain the differential equation having a solution as

$$y = Ae^{-4x} - Be^{2x} + C \tag{6 mks}$$

d) Solve the non-homogeneous differential equation

$$2y^{II} + 3y^{I} + y = x^{2} + 3sinx ag{6 mks}$$

- e) The temperature of a car engine by the time it is shut off is $220^{\circ}C$. The surrounding air temperature is $35^{\circ}C$. After 12 seconds have elapsed, the temperature of the engine is $150^{\circ}C$
 - (i) How long will it take the engine to cool to $60^{\circ}C$ (4 mks)
 - (ii) Find the engine temperature after 70 seconds (2 mks)

QUESTION TWO [20 MARKS]

a) Test for exactness and solve the differential equation

$$(2y^3 - x^2y - 2x + 3)dy - (xy^2 + 2y)dx = 0 y(0) = 1 (8 mks)$$

- b) Show that $\frac{dy}{dx} = \frac{2x x^2}{3 + y^3}$ is separable and hence find its particular solution under the Condition y(2) = -1 (5 mks)
- c) A man sitting on an electricity power post 20 M high throws a nail upward with a speed of 30M/S
 - (i) How long does the nail stay in the air (4 mks)
 - (ii) With what speed does the nail hit the ground (3 mks)

QUESTION THREE [20 MARKS]

(a) Obtain a differential equation corresponding to the following operator equation

$$(2D + 3x)(2D - 3x)y = 0$$
(5 mks)

- (b) Solve the equation $\frac{dy}{dx} 3xy = 3xe^{-x^2}$ (7 mks)
- (c) Given the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 5y = 0$ Verify that the functions $e^x \cos 2x$ and $e^x \sin 2x$ are linearly independent solutions of the homogeneous part of the differential equation. (8 mks)

QUESTION FOUR [20 MARKS]

a) Solve the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x} \,, (7 \text{ m/s})$$

b) Solve the linear fractional differential equation

$$(x+2y+1)dx - (2x+4y+3)dy = 0$$
(6 mks)

c) Solve the equation by method of variation of parameter

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2e^x \tag{7 mks}$$

QUESTION FIVE [20 MARKS]

- (a) The sum of Kshs 2800 is invested at a rate of 11% per annum compounded continuously. What will be the amount after 8 years? (4 mks)
- (b) Using the integrating factor solve the differential equation

$$x(y+x+1)dy + y(y+3x+2)dx = 0$$
 (9 mks)

(c) Solve the following Bernoulli's equation

$$2xy\frac{dy}{dx} = y^2 - 2x^3, y(1) = -2$$
 (7 mks)