

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS FIRST YEAR FIRST SEMESTER

FOR THE DEGREE IN (INFORMATION TECHNOLOGY/ COMPUTER SCIENCE)

COURSE CODE: BIT 111/CSC 112

COURSE TITLE: DISCRETE STRUCTURES

DATE: 13/12/2022

TIME: 9.00 A.M- 11.00 A.M.

INSTRUCTIONS

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

- a. Given non-empty sets A, B, C, and that they are not disjoint. Define the inclusive-exclusive principle on sets A, B and C.
 [2 marks]
- b. Given two sets A= {a₁, a₂, a₃} and B= {b₁, b₂, b₃}, define the Cartesian product of A and B and show that Cartesian product is not commutative.
 [3 marks]
- **c.** Determine truth value of the statement: If 2 + 5 = 25 then Uganda is in Indian Ocean.

[2 marks]

- d. Find:
 - i. The value of n if $_{n}P_{3} = 5*_{n}P_{2}$

[2 marks]

ii. C(11,7)

[2 marks]

e. Prove by the method of induction, that for all $n \in N$,

1.2.3 + 2.3.4 + 3.4.5 +.....+ n (n + 1) (n + 2) =
$$\frac{n(n+1)(n+2)(n+3)}{4}$$

[4 marks]

f. Let $f: \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = 2x^3 + 51$. Find the inverse of f(x).

[2 marks]

g. Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of the following statement:

 $(\exists x \in A)(x + 3 = 10)$

[2 marks]

- h. In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?
 [3 marks]
- Using Euclidean algorithm find the GCD of 1215 and 4551 hence or otherwise find the value of x and y in x(1215)+ y(4551)=gcd(1215, 4551).
 [4 marks]
- **a.** Let R and S be the following relations on $A = \{1, 2, 3\}$: $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}$, $S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$ Find:

i. $(R \cup S)$ and $(R \cap S)$

[2 marks]

ii. R°S

[2 marks]

QUESTION TWO [20 MARKS]

a. Differentiate between a function and a relation as used in the study of discrete structures.

[2 marks]

i. Let R be the relation on N defined by x + 3y = 12, i.e. $R = \{(x, y) \mid x + 3y = 12\}$. Write R as a set of ordered pairs and determine the composition relation $R \circ R$. [4 marks]

b. Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B:

 $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$

i. Find the inverse relation R^{-1} of R. [2 marks]

ii. Determine the matrix of the relation. [2 marks]

iii. Draw the arrow diagram or digraph of R. [2 marks]

c. Let $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \frac{2x+1}{x}$ and $g(x) = \frac{x^2-2}{x-2}$.

Find

i. Domain and range of f(x) [2 marks]

ii. $g \circ f$ [2 marks]

iii. f(g(3)) [2 marks]

iv. If g(x) is one-to-one mapping or onto. [2 marks]

QUESTION THREE

[20 MARKS]

a. Given U as a set of English alphabets and sets A, B and C formed from distinct characters of the word "generosity", "crocodile" and "programming" respectively.

Find:

i. n(AUBU) [2 marks]

ii. $(A \cap B \cap C)^c$ [2 marks]

b. The students who stay in hostel were asked whether they had a textbook and digest in their rooms. The results showed that 750 students had a textbook, 250 did not have a textbook, 225 had a digest and 100 had neither a textbook nor a digest. Find:

i. The number of students in hostel [2 marks]

ii. How many have both a textbook and digest [2 marks]

iii. How many have only a digest. [2 marks]

c. Determine the truth value of each of the following statements where $U = \{1, 2, 3\}$ is the universal set:

i. $\exists x \forall y, x^2 < y + 1$	[2 monto]
ii. $\forall x \forall y, x^2 + y^2 < 12$	[2 marks]
d. i. You are given the propositions, p : the students are rowdy, q : the situation	[2 marks]
lessons are cancelled. Represent the following statement "it's not the cas	ation is violent and r:
are rowdy and the situation is violent then lessons are cancelled" symbolically and draw	
its truth table.	
ii. Give the symbolic form of "some men are greedy"	[4 marks]
mon are greetly	[2 marks]
QUESTION FOUR	120 35 1 77707
a. Differentiate between permutation and combination.	[20 MARKS]
b. A history class contains 8 male students and 6 female students. Find the	[2 marks]
that the class can elect:	
i. 2 class representatives, 1 male and 1 female.	[0]
ii. 1 president and 1 vice president.	[2 marks]
c. Consider all integers from 1 up to and including 100. Find the number of	[2 marks]
or the cube of an integer	
d. In a class of 30 students, 10 got A on the first test, 9 got A on a second test	[2 marks]
an A on either test. Find: the number of students who got:	
i. an A on both tests	
ii. an A on the first test but not the second	[2 marks]
iii. an A on the second test but not the first	[2 marks]
e. Using the principle of mathematical induction show that:	[2 marks]
$\sum_{r=0}^{n} 3^r = \frac{3^{2n+n}-1}{2}$ for $\forall n \in \mathbb{N}$.	[6 marks]
QUESTION FIVE	-
a. What is a logic gate?	[20 MARKS]
b. Using A and B as inputs, draw logic gates and a truth table for:	[1 mark]
OR gate	10
AND gate	[3 marks]
	[3 marks]

NOR gate

XOR gate

[3 marks]

[3 marks]

[3 marks]

c. Write down the output denoted by Q in Figure 1 below.

[2 marks]

Figure 1: Logic Circuit

d. Prove that ${}_{n}P_{r} = (n-r+1)* nP_{(r-1)}$

[5 marks]