

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR**

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTERS (PHYSICS)

COURSE CODE:

SPH 812

COURSE TITLE:

QUANTUM MECHANICS

DURATION: 2 HOURS

DATE: 13/12/2022

TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES

Answer any three (3) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [20 Marks]

[@ 1Mark] a) Explain the meaning of the following terms; State vector (i) Linear operator (ii) Orthogonal eigen vector (iii) Bra of a vector space (iv) Dynamical variable (v) Scattering amplitude (vi) b) Show that the momentum and kinetic energy operators are hermitian. [8Marks] [6Marks] c) Show that (i) $[L_x, L_y] = i\hbar L_z$ (ii) $[L_x, y] = i\hbar Z$ **QUESTION TWO [20 Marks]** [4 Marks] a) What is a perturbation method? b) Differentiate between degenerate and non-degenerate perturbation theory [4 Marks] c) Assuming a non-degenerate system with an unperturbed Hamiltonian H_0 with eigenstate |n> and energy ε_n with a perturbing Hamiltonian V, show that the first energy correction is given by $\langle n|V|n\rangle$ d) Consider a perturbation of the form $\frac{1}{2}bx^2$ to the linear harmonic oscillator problem and [6 Marks] determine the associated angular frequency, w_n **OUESTION THREE [20 Marks]** [3Marks] a) Write down the Pauli matrices σ_x , σ_y and σ_z [3Marks] b) Show that they are Hermitian matrices [5Marks] Obtain the values of σ_x^2 , σ_y^3 and $\sigma_x^2 + \sigma_y^2 + \sigma_z^2$ [3Marks] d) Obtain the values of $\sigma_x \sigma_y$, $\sigma_y \sigma_z$ and $\sigma_z \sigma_x$ e) Show that the only matrix which commutes with the spin matrices is a multiple of the [6Marks] unit matrix **QUESTION FOUR [20 Marks]**

[2Marks] a) Define the term 'differential cross section' in scattering theory

b) Explain the general procedure for determination of differential cross section using the Born approximation [5Marks]

c) Explain the main ideas of the Born approximation and Born series d) Elastic scattering from heavy nucleus can be represented by;

 $v(r) = \begin{cases} -v_0, & r < R \\ 0, & r > R \end{cases}$

Use the Born approximation in the central field potential to calculate the differential [8Marks] cross section in the lowest order in v(r)

QUESTION FVE [20 Marks]

a) What is variation method? [4Marks]

b) List and explain the steps for the application of the variation method for the determination of ground state energies [8Marks]

c) Consider a particle of mass, m bouncing vertically and elastically in the z-direction on a reflecting hard floor. Treat this as a quantum particle and write down a possible trial wave function and the Hamiltonian of the system [8Marks]

THIS IS THE LAST PRINTED PAGE