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We present some results concerning the general theory of Banach ideals of 

operators and give several applications to Banach space theory. We give, in 
Section 3, new proofs of several recent results, as well as new operator charac- 

terizations of the .%&spaces of Lindenstrauss and Pelczynski. In Section 4 we 

prove that the space of absolutely summing operators from E to F is reflexive 
if both E and F are reflexive and E has the approximation property. Section 5 

concerns Hilbert spaces. In particular, we compute the relative projection 

constant of Hilbert spaces in L&)-spaces. 

In this paper we present some results concerning the theory of 
Banach ideals of operators [31, 381. Sections 1 and 2 are devoted to 
proving results, summarized in a table, concerning the ideal A and 
three associated ideals, A*, Ad and A’. For Banach spaces with the 
metric approximation property it turns out that A*(& F) = Ad(E, F). 
It will become evident that in most cases Ad is the most important 
for the applications. 

All properties we use concerning the approximation property, 
trace, and the notation and results concerning tensor products may 
be found in [12] and [13]. 

In Section 3 we give, in a relatively easy manner, new proofs of 
several recent results as well as new results concerning the 9?-spaces 
of Lindenstrauss and Pelczynski [22]. The main result here is 
Theorem 3.6. We also give elementary proofs of results of Cohen [3] 
and Persson [27]. 

In Section 4 we prove that 17,(&F), the space of absolutely 
summing operators from E to F, is reflexive if both E and F are 
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reflexive and E has the approximation property. This result answers 
a question raised by P. Saphar at the conference on the geometry of 
normed linear spaces held in Jerusalem in June, 1972. Our applica- 
tions in Section 5 concern Hilbert spaces. In particular, we compute 
the relative projection constant of Hilbert spaces in the L&)-spaces. 
This answers a question of H. P. Rosenthal. 

Although some of the ideas we use go back to the theory of tensor 
products as developed by Schatten [39] and Grothendieck [12, 131, 
our theory of conjugate ideals allows the proof of many results 
without the hypothesis of the (metric) approximation property 
[(m).a.p.] so critical to the latter work. In view of the remarkable 
example of Enflo [6], this is a real point of difference with the theory 
of tensor products. On the other hand we use tensor product methods 
in Section 4 and obtain, in the process, a rather curious fact concerning 
certain Banach ideals of operators. 

1. IDEAL NORMSANDPRRLIMINARIES 

In the following LZ denotes the class of all bounded linear operators 
between arbitrary Banach spaces and y(E,F) the set of all such 
operators between specific Banach spaces E and F. Following Pietsch 
[31] we say that a class A of bounded linear operators is an ideal if 
for each set A(E, F) = A n LZ’(E, F) one has 

(a) if x’ E E’, y E F then x’ @ y E A(E, F) (x’ @ y is the rank 
one operator given by x’ @y(x) = (x, x’) y); 

(b) A(E, F) is a linear subset of Y(E, F) for each E and F; and 

(c) if U E 2(X, E), T E A(E, F), VE P(F, Y), then VTU E 

4% Y). 

The finite rank operators 9 obviously form the smallest ideal. 
A function CL on the operators T in an ideal A to the nonnegative 

real numbers is an ideal norm if one has 

(d) ifx’EE’,yEFthenol(x’@y)=IIx’lI[]y)(; 

(e) if S, T E A(E, F) then ol(S + T) < a(S) + a(T); and 

(f) if U E 9(X, E), T E A(E, F) and V E Z(F, Y), then 

4VTU) G II VII a(T) II U Il. 
We write a(T) < co iff T E A(E, F). 
An ideal A with a norm CY, [A, CY], is a Banach ideal if each component 

A(E, F) is a Banach space under 01. 
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To any linear normed ideal [A, a] we associate three normed 
ideals as follows: 

(i) The dual ideal [A’, 01’1: An operator T is in A’(E,F) iff 
T’ E A(F’, E’). Here a’(T) = a( T’). 0 ur next ideal will be extremely 
useful in the applications. 

(ii) The conjugate ideal [A”, aA]: A”(E,F) is the class of all 
operators T E 2’(E, F) f or which there is a p > 0 such that for any 
L E 2qF, E) 

1 traceLT 1 < p(L). 

Here c@(T) = inf p, p satisfying the above inequality. It is clear that 
(Y~ is always a complete ideal norm. 

(iii) The adjoint ideal [A*, a*]: A*(E,F) is the class of all 
T E 2(E, F) for which there is a p > 0 such that for all finite dimen- 
sional Banach spaces X, Y and for all V E 9(X, E), U E A(Y, X) 
and WE ,Ep(F, Y), 

I trace JvTVU I < P II WII II VII 43. 

The norm c11* is given by 

a*(T) = inf p, 

p satisfying the above. Also ~11* is always a complete ideal norm. 
Following Pietsch [3 1 ] we say that an ideal [A, a] is perfect if 

[A, a] = [A**, cd**] with equality of the norms. We shall write 
“ol is perfect” when no confusion is likely. 

We begin with a result of Pietsch [31]. 

PROPOSITION 1.1. Let T E 2’(E, F). Then a.*(T) < a”(T), and 
equality holds if both E and F have ?.a.~. 

Proof. By the definitions a*(T) < a”(T). Assume now that E 
and F have m.a.p. Let S = CiGn yi’ @ xi be a finite rank operator 
from F to E and let E > 0. Choose U E S(E, E), V E S(F, F) so that 
II u II < 1 + % II VII G 1 + E? UX, = xi and VTX, = Txi for each 
i = 1, 2,..., ?t [ 161. Let I be the inclusion of V(F) into F, J the inclusion 
of U(E) into E, and V, , U, the astrictions of V, U, respectively, to 
their ranges. Consider the sequence of maps 

E-F? V(F)= U(E)TE. 
T  a 0 
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Then 

I trace( = 1 i;n (Txi ,~i’) 1 

= lzn (VTUxi ,~il) 1 

= 1 trace(SVTU)l 

= 1 trace(USVT)I 

= j trace(j(UJ1) VaT)I 

< a*(T) 4UaW II I II II Va II 

< a*(T) c@)(l + c)“. 

COROLLARY 1.2. c@* = 01**. 
The following result was also first proved by Pietsch [31]. 

PROPOSITION 1.3. For T E L?(E, F), 

a**(T) = sup a(UTV), 

where the suprenum is taken over all Jinite dimensional X, Y and all 
V E 9(X, E), U E 9(F, Y) with 11 V 11 = 1,/I U I/ = 1. 

Proof. Given E > 0, there are finite dimensional spaces X, Y 
and operators V E 9(X, E), U E S?(F, Y) and S E A( Y, X) such that 
a*(s) = 11 u 11 = 11 VI) = 1 and a**(T) - E < I trace(SUTV)I. By 
Proposition 1.1, 

I trace(SUTV)I < old(S) a(UTV) 

= a(UTV). 

Conversely, given any finite dimensional spaces X and Y, it is 
known (cf. [31, Theorem 41) and easy to prove that [A(X, Y), ar]’ is 
naturally isometric to [A”(Y, X), ard], where (W, S) = trace(SW). 
Let V E 9(X, E) and U E 9(F, Y) both have norm one. Choose 
s E A”(Y, X), a”(S) = 1, so that a( UTV) = trace(SUTV). Then 

a( UTV) < a*(S) a*A( UTV) 

= a”(S) a**(UTV) 

< a**(T) 

by Proposition 1.1. 
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COROLLARY 1.4. The norm (Y is perfect if and only if, for all T, 

a(T) = sup cx( UTV), 

where the supremum is the same as in the preceeding proposition. 

Remark. It follows easily from the corollary that 01* is perfect 
for any ideal norm ~1. 

Recall the following result of Pietsch. 

PROPOSITION 1.5 ([31]). For any ideal norm 01, 01*’ = LX’*. 

PROPOSITION 1.6. For any ideal norm LY, my” A’ < clA < 01~‘. 

Proof. Suppose cxA’( T) < co, where T E 9(E, F). Let S E 9(F, E). 
Then 

1 trace(ST)j = 1 trace(T’S’)l 

< aA a(s’) 

= d’(T) d(S). 

Hence, OL’~( T) < clA’( T). 
For the other inequality, let T E Z(E, F) satisfy JA(T) < CD, 

E > 0, and S = C t<n xi @y; be a finite rank operator from E’ to F’. 
By [l] there is a mapping P: [xi] --t E such that 

1 :a <xi - Px; , T'Y,') / c E, 

andIIPII<l.LetL=S’IF.Then 

) trace(T’S)j = 1 trace(LT)l 

< 1 trace(LTP)I + 1 trace(LTP) - trace( 

< 1 trace( TPL)I + E 

,< dA(T) ar’(PL) + E 

< a’A(T) II P II 4s’ I F) + e 

< dd(T) or’@‘) + E 

= dA(T) C(S) + E. 

Thus, a”“‘(T) = cl’“(T’) < CL”(T). 
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COROLLARY 1.7. For every T E Z(E, F), a”‘(T) = z’“(T) whenever 
(II is perfect or both E and F are rejexive. 

Proof. Observe that a”* = a* always holds, and that a**” = 
(y. fl** - - 01** by Proposition 1.5. Now if 01 is perfect, 01 = a**, and, 
hence, anA’ = u**“~’ = 01**~’ = aA’, and the result follows. 

If E and F are reflexive, then a”(S) = a(F) = a(S) for all 
S E Z(E’,F’). Therefore, a”“(T’) = ol”(T’) for all T E 9(E, F), that 
is, CY”~‘( T) = uA’( T). 

We end this section with some more results which will be useful 
in the applications. 

PROPOSITION 1.8. For all finite rank L, aAdA = aA( and 
oldA(L) < a(L) with equality when 01 is perfect. 

Proof. Let LES(E,F) and U E 9(F, E). Then 1 trace( UL)[ < 
E(U) u”(L), therefore, a”“(U) < U(U) and also a”““(L) > a”(L). But 
also 1 trace( UL)J < olAA( U) ad(L), so oldAd < ad(L), which implies 
equality. When 01 is perfect, a(L) > oldA(L) 3 add**(L) = or****(L) 
(by Corollary 1.2) = a(L). 

COROLLARY 1.9. For any T, a”(T) < cxAAA( T) with equality when 
(II is perfect or T finite rank. 

COROLLARY 1.10. adAAd = oldA. 

COROLLARY 1.11. a** < olAd < Bag. 

Proof. 01** = oldA** < olAA < atA by Proposition 1.1, Corol- 
lary 1.2, and the remark after Corollary 1.4. 

2. EXAMPLES 

We now give some examples and a table showing the relationships 
between the various ideals. Proofs of the results listed in the tables 
will be given in Section 3. 

(1) Let C(E, F) d enote the closure of 9(E, F) in Z(E, F) and 
K(E, F) denote the compact operators from E to F. Then [6p, I/ * 111, 

[K II * III and [C II - Ill are Banach ideals. If one orders the Banach 
ideals by [A, a] < [B, /3] if and only if A(E, F) C B(E, F) and 
a(T) > ,8(T) for T E A(E, F) then [6p, I/ * \I] is the largest Banach 
ideal. 
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For a finite or denumerable set (x1 ,..., x~) in a Banach space E, 
let E,({xJ) = ~up((&~ l(xi ,f>lp)l’p : llfll ,< l}, if 1 <P < 00 and 
Cr,({Xi}) = sup{supi<, 1 ( xi ,f>i : 11 f il d I>; “p({xi>) = (&N 11 xi Ilp)l’p~ 
if 1 < p < + 00 and G((x~}) = supi(N 11 xi II; and, u,({%)) = 
SUP{/ Ci<N (Xi >.fi>l : y({fi}) < I>, l/P + l/P’ = 1. 

We now continue with our list of Banach ideals. 

(2) Let 117,) p rr ] denote the ideal of p-absolutely summing opera- 
tors: T E &(E, F) if there is a p > 0 such that ~,({Tx~}) < p~,((x~}) 
for all finite sets {xi ,..., xN) in E. The norm rP is given by 
v,(T) = inf p, p as above. 

(3) Let 10, , d,l d enote the ideal of strongly p-summing opera- 
tors: T E D,(E, F) if there is a p > 0 such that cr,({Tx,}) < p~,({x~}) 
for all finite sets {x1 ,..., xN} in E. Here d,(T) = inf p. 

(4) Let [J, , j,] denote the ideal of Cohen p-nuclear operators: 
T E J,(E, F) if there is a p > 0 such that u,((TxJ) < peP({xi}) for 
all finite sets {x1 ,..., xN> in E. Here j,(T) = inf p. 

(5) Let VP , p i ] denote the ideal of p-integral operators: 
T E I,(E, F) if there is a probability measure space (a, p) and opera- 
tors I’ E L?(E, L&)) and WE 2(,?&(~), F”) such that WjV = iT, 
where j is the canonical injection of L,(p) into L&) and i the canonical 
injection ofF intoF”. The norm iP is given by i,(T) = inf 11 V ]I I] WI\, 
the infimum taken over all probability measure spaces (Q, p) and 
operators V and IV. 

(6) Let [N, , ~~1 denote the ideal of p-nuclear operators: 
T E N,(E, F) if T has a representation T = CL, fi @ yi , where 
fi E E’, yi EF and a,({fJ) -=c + co and y((yi)) < $-co, l/p + l/p’ = 1. 
Here v,(T) = inf ap((fi}) ~~({y~}), where the infimum is taken over 
all such representations of T. If p = 00 there is the additional require- 
ment thatfi--+O as i-t 00. 

(7) The ideal [Np, P] is defined as above, interchanging the 
roles of {fi} and {y,}. 

(8) Let [NpQ, vp “1 denote the ideal of quasi-p-nuclear operators: 
T E NPQ(E, {) if there exists {fi} in E’, aS({fi}) < + co such that 

II TX II d (LI I f&)P-Yp when 1 d p < ~0, and I/ TX II < supc I f&x)/ 
when p = CO in which case it is also required that fd + 0 as i -+ co. 
Here vpQ(T) = inf aP({fi}), where the infimum is over all such 
sequences (fi>. 

(9) Let [C P , c,] denote the ideal of operators factoring com- 
pactly through 1,: T E C,(E, F) if there are A E C(E, I,), B E C(l, , F) 
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such that T = BA. The norm cp is given by c,(T) = inf 11 A j/ /I B I/, 
the infimum over all such factorizations T = BA. 

(10) Let [G > ~pl d enote the ideal of operators factoring 
through Lp: T E I’,(E,F) if for some L,(p), p a positive measure, 
there are operators A E g(E, L&A)), B E Y(L,(p), F”) such that 
iT = BA, where i is the canonical injection of F into F”. Here 
y,(T) = inf I] A /I I/ B 11, A, B as above. 

The ideals [np, p r ] were studied by Grothendieck [12], Pietsch 
[29], Pietsch-Persson [28], P ersson [27], and Saphar [36]. The ideals 
J, and Dp were introduced by Cohen [3]. The ideals [Ip , ip], [Np , up], 
[Np, ~“1, and [Npo, vpo] were studied by Grothendieck [12], Pietsch- 
Persson [28], and Saphar [35]. 

The ideal [C, , p c ] was introduced by Johnson [15] and further 
studied by Figiel [7]. Finally the ideal [r, , yp] was introduced and 
studied by Kwapien [18]. 

It turns out that modifications of the ideals r, , J, , and Ip are 
useful for applications. 

(11) Let L P p* P i ] co >, p > q > 1, denote the ideal of opera- 
tors factoring through a diagonal B E $4(L,(p), L,(p)): T EI,,(E, F) if 
for some positive measure p there are operators A E S?(E, Lp(p)), 
B E Z(L,(p), L,(p)) and C E ,Ep(L&), F”), where B is of the form 
Bf = f * g for some fixed g E L,,(p) where l/r = l/q - l/p, such that 
iT = CBA where i is the canonical injection of F into F”. Here 

&,(T) = inf II A II II B II II C Il. 
We note that 1,&E, F) = 1&E, F) with equality of norms. 

(12) Let EJ,, &J co > p 2 q > 1 denote the ideal of opera- 
tors factoring through D, 0 17p. * T E J,,(E, F) if iT admits a factoriza- 
tion as follows: 

where U E n,(E, G) and V E D4( G, F”). Herej,,( T) = inf rp( U) d,(V) 
the infimum taken over all U, V, G. Finally 

(13) Let [r’, , ypq] be defined as in [Ipa , ipa], the only difference 
being that B ranges over all operators in Z&(p), L&p)). 

We now give Table I summarizing the relationships between the 
ideals above. In all cases in our table 1 /p + l/p’ = 1. The table is 
arranged so that when a property, such as m.a.p., is placed in a 
column, we assume this property for all entries which follow. 
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TABLE I 

Ideal Adjoint (*) Conjugate (A) Dual (‘) 
--- 

[Y> II . Ill t4 ,&I [I1 , 41 [Y, II * III 
CK, II . Ill [I1 ,4 [I, ,&I [K, II . Ill 
[C, I! . Ill [I1 ,&I [II ,&I [C, II . Ill 
[IL 9 ~,I 9’ , &*I 

rX3 , &,11 
9’ , &,I 

IL , Gbl 
[D,, , &I 

N’s 9 41 t+ , 4 
11, , id [rd > WI [rd , WI [Ii ,.&,I 

[NsQ> ~~1 [Id ,4l*l [I,* , +I a 
E’orF 

has ffl.a.p. 
[I, t41 [nd , ~1 c17,, , d [Id1 , idJ 
[To 9 r9l [Id , &,I [I,* , i,*l [rd , YCI 

k 2; 
[Jiu* , kdl 
[I , , . a lJ 7 &‘Y >I” 

UC;’ A&; I, if,] 

r’e’ * 9’9’ $a,l# : ];“#] 
E’ or F” 

has m.a.p. 
W, 9 4 wd , rdi c+ , 4 W’, ~“1 
[Np, 4 [D, 7 41 [D, 3 41 IN, ,4 
G 9 51 [I,* , &,I [ 1,s , L.,l [C D’ 9 WI 

o This entry is the closure of S(E, F) in the norm d,, . 
b A. Pietsch has informed us that J. T. Lapreste has shown that 1, is a perfect ideal. 

Thus, $+ may be replaced by IW throughout this paper. 
1 See the remark following Table I. 

We remark that we prove some results in the table with weaker 
hypotheses, but to list these results separately would make the table 
too cumbersome. 

Observe that from the table it follows that if A is any perfect 
ideal then I1 C A C 9. Also from the table I’, , .& , J,, and their 
adjoints and duals are perfect. In particular I1 C J, for all p; this 
result of Cohen [3] will be used later. We point out that although 
the m.a.p. hypothesis is not required to prove results concerning 
the adjoint ideals, the conjugate ideals are naturally more useful to 
consider in the applications which follow. We, therefore, prove the 
results on the conjugate ideals under the weakest possible hypotheses. 

It will be helpful to the reader to refer to Table I occasionally. 
We will first briefly discuss what is known about the adjoint and 
dual ideals in the well known cases, and then describe the conjugate 
ideals. 

It is known 131) that [IP*, i,*] = [17,# , rPt] with equality of 
norms and that [IP , i,] is perfect. Also, [I&‘, ~~‘1 = [D,e , d,!] [3], 
and the latter ideal is perfect since cy’* = LX*’ for every ideal norm CY, 
and since cy* is always perfect. The equality [F,*, rP*] = [J,! ,j,s] 
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is contained in Grothendieck [12, 131 for p = 1, 2, co, and is given 
by Kwapien [IS] for arbitraryp, 1 <p < co. No detailed proof that 
r, is perfect is given in [18]; we shall later give a proof of this fact 
in a more general case. It is immediate from the factorization definition 
that yp’ = ‘yp’ , and the formulaj,,’ = j,, again follows since OL’* = a*‘. 
It is well known that [K’, jl * ii] = [K, 11 . 111 (cf. [5]), and by the local 
reflexivity principle [16] [C’, 11 * II’] = [C, jl * /I]. 

We begin by recalling two well known results from Grothendieck 
(cf. [12, Definition 7, p. 126, Proposition 35(B) and Proposi- 
tion 39(B,)]). 

LEMMA 2.1. A map T E Z(E, F) satisfies ir( T) < p isf / trace(ST)/ < 
p 11 S 11 for every S E 9(F, E); that is, il = Ij 11“. 

LEMMA 2.2. For T E 9(E, E), 

(a) / trace(T)] < vl(T) whenewer E has a.p.; 

(b) vl(T) = i,(T) whenever E has m.a.p. 

LEMMA 2.3. If a: is any ideal norm, T E A?(E, F) and S E 9(F, G), 
then i,(ST) < a”(T) a(S) and i,(ST) < a(T) ad(S). 

Proof. Let L E F(G, E). Then 1 trace( T(LS))I < ar(LS) a”(T) < 
4s) a”(T) II L IL S ince ii = 11 IId, the first inequality follows. The 
other proof is the same. 

With assumptions involving m.a.p., the inequality of Proposi- 
tion 1.8 may be improved. 

PROPOSITION 2.4. Let T E Z(E, F), where one of E, F has m.a.p. 
Then c+(T) < a(T), with equality when 01 ?s perfect. 

Proof. Suppose E has m.a.p. and let SE F(F, E). Then ST is 
nuclear and by Lemma 2.2(a), / trace(ST)] < v,(ST). But by 
Lemma 2.2(b), v,(ST) = i,(ST), so that / trace( < a(T) ad(S) 
by Lemma 2.3. This gives c&(T) < a(T). The equality when 01 is 
perfect follows from Corollary 1.11. 

THEOREM 2.5. Let T E ,Lp(E, F) and l/p + l/p’ = 1. 

(a) rpA = ipI. 

(b) i$( T) b Gr( T) 3 rip(T), with equality if T is Jinite rank, 
or if either E or F has m.a.p. 

(4 j,* = w . 
(d) $j( T) 3 Cdp$T) > j,(T), with equahty if T is Jinite rank, 

or if either E or F has m.a.p. 
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Proof of (a). F or one inequality we have that iPc = 7rD* < TV”. 
For the other inequality let T E I,*(.%‘, F), E > 0 and iF be the canonical 
embedding of F into F”. If p < co, let L E 9(F, E) and choose 
K, D, R so that \I R \I = I\ K \I = 1, i,(D) < i,(T) + E and so that 
the following diagram commutes: 

Then, trace(TL) = trace(i,TL) = trace(RDKL) = trace((KL)” RD), 
since L is finite rank, Since L,(p) has m.a.p,, by Lemma 2.2 

1 trace(KL)“RD)I < i,((KL)“RD) < n,((KL)“) i,@D). 

Since a(T”) = a(T) h w  enever 01 is perfect [31], it follows that 

I trace( G ~,F”) II K II II R II GP) 
< a&)[i,W + ~1. 

The case p = co is Lemma 2. I. 

Proof of (b). Since ipl < vPt we have i$t > 43 . Since ipn and vPl 
agree on operators between finite dimensional spaces u$* = ii* = rp . 
Thus, iit > ~$1 > v$* = np. 

If T E 9(E, F), let L E 9(F, E) and E > 0 be given. Factor L as 
in the following diagram 

ET’F L’E-LE 

A 

1 t 
C 

Lo(P) B - h&) 

where 11 A 11 = 11 C II = 1, ipI < (1 + 6) iD(L) and 1 the natural 
injection. Then 

) trace( = / trace(lLT)I 

= I trace(CBAT)I, and since AT is finite rank 

= 1 trace((dT)“CB)I, and by Lemma 2.2 

< i,((AT)“CB) 

d n,((A T)“) E‘,,(CB) 

d n,(T”) II A II II C II id@ 
< (1 + 4 a,(T) i,,(L). 

#O/14/1-7 
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This implies i:(T) < ~~(7). If E or F have m.a.p., by Proposi- 
tion 2.4, e(T) = 7rp(T) for all T E 5?(E, F), but by (a) e = i$, . 

Proof of (c). We again have yp’ = j,,* < jpA. For the other 
inequality, let T E I’,(E, F), E > 0 and iF the canonical embedding 
of F into F”. Let L E 9(F, E) and choose operators A and B so that 
11 A II 11 B 11 < (I + E) 1/23(T) and so that the following diagram com- 
mutes: 

As before trace(TL) = trace((AL)” B). Since L is finite rank and 
Lp(p) has m.a.p., I trace((AL)” B)l < i,((AL)” B) = j,((AL)” B) by 
the remarks preceeding Table I. 

/ trace( < j,((AL)“B) 

< U”) II A II II B II 

G (1 + 4M) Y&9* 

The last inequality holds because jz, is perfect. Since L and Q were 
arbitrary, j,“(T) < ypt( T). 

Proof of (d). Since rp’ ,< cp’ we have r<(T) > G’(T) and 
Cd,*(T) > c;?(T). But between finite dimensional spaces it is easily 
seen that- cpe = rp’ ; therefore, cf,( T) = r,*r( T) = j,( 2’) for all 
T E d?(E, F). 

Suppose ‘now that T E F(E, F). Given L E Y(F, E) and E > 0, 
choose a factorization of L with 11 A /I )I B Ij < (1 + E) yp(L) so that 
the following diagram commutes: 

Then as in (b) 

1 trace( = 1 trace((AT)“B)I < i,((AT)“B) = j,((AT)“B) 

(by Cohen’s result E31) <j,(T”) II A II II B II < (1 + 4&,(T) r&L). 
Thus, Y$< T) < j,(T). 
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If E or F has m.a.p. and T E OLp(E, F), then by part (c) and Proposi- 
tion 2.4 

y:,(T) = j?(T) = j&T). 

COROLLARY 2.6. v,“” = ii” = ip and cg” = y$ = yp . 

Proof. By (b) we get that $5 = v$ = 7pA, but npA = iDr . 
Part (d) gives the second case. 

Remarks. (1) Since ?T~(L) = vDQ(L) if L E S(E, F) we obtain 
QA - . 

VP - ZP’ = vg *. We used in the proof that ygr = $1 = j, , and 
that v*, = i*t = 7~ 

P P p , because vp’ = ip* between finite-dimensional 
spaces. 

(2) The equality in (b) remains true for T E N,Q(E, F), which is 
seen by passing to the limit of finite rank operators in the (rp =) vDQ- 
norm. 

(3) Another version of (b), involving only a.p. in the case 
1 < p < CO, will be given later. 

The proof of the following lemma is straightforward. 

LEMMA 2.7. If 1 <p, r < co, 4-l = Y+ + p-l < 1 and a, b are 
positive reals, then the function p)(t) = p-9PaP + r-lt-rbr has a mini- 
mum value of q-‘(ab)q at some point in (0, 00). 

THEOREM 2.8. For 1 < q < p < 00, Ipq and I’,, are Banach 
ideals. 

Proof. The only thing that need be shown is that ypq and i,, both 
satisfy the triangle inequality. For the sake of simplicity we give 
only the proof for ypq when1 <q<p<co. 

Let Ti E I’,,(E, F) for i = 1,2, and let I be the natural inclusion of 
F into F”. Let A,: E -+ Lp(&, Bi: L&J -+ L,&) and C,: L,(& -+ F” 
be any operators satisfying C,B,A, = ITi , i = 1,2. Let v be the 
measure on the disjoint union of S, and S, which agrees with ps on Si . 
Then clearlYLp(v) = (LP(cL1) 0&4tL2))P andL,(v) = &b-4 @JqcL‘&. 

For positive numbers s, t, U, and v define A: E -+ Lp(v) by A(x) = 
(uvA,(x), stA,(x)), B: Lp(v) -+Lq(v) by B(f, g) = @-‘B,(f), +B,(g), 
and C: D(v) -+ F” by C(f, g) = v-W,(f) + t-W,(g). Then clearly 
CBA = I(Tl + T,) and 

II A II < [(MP II 4 IIP + (St)” II A, Il*ll’p, 

II B II < [u-’ II B, II’ + s-l II B, Il”ll’r, q-1 = p-1 + y-1, 
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and 

11 c I/ < [u-“’ I/ Cl /I@ + t-9’ 11 c, p’pg’. 

By Lemma 2.7, 

r&T1 + Tz) d II R II II B II II C II 
d P(// A II II B II)” + (W I/ C I4 
< P-’ II A II” + r-l II B IlF + (Q’Y I/ C IP 
< Pu*(v II 4 llJp + +u-~ II B, IlT 

+ p-ls*(t II 4 II)” + rlrr II B, /I+ 
+ (4’Y II c IIn’- 

Taking the infimum successively over all positive u and s gives 

r&“, + T,) d crl(” II 4 II II B, III9 + W’ t+’ II C, P’ 

+ ~‘0 II 4 II II B, II) + (a’>-’ P’ II C, JIB’, 

Another two applications of the lemma shows 

~p&Tl + T,) < II 4 II II 4 II II C, II + II 4 II II 4 II II G II. 

Finally, taking the infimum over all possible factorizations of Tr and 
T2 yields the triangle inequality. 

When p = q it is clear that Ip4 = I’,, = r, . A simple description 
of Ipg for q < p is given in the following result. 

PROPOSITION 2.9. Let I < q < p < a, T E I,,(E, F) and E > 0. 
There is a probability measure v and operators A: E + Lp(v), 
B: L,(v) --+F” such that 11 A III/ B jl < (1 + E)&(T) and IT = BJA, 
where I: F -+ F” and J: L,( ) v + L,(v) are the natural injections. 

Proof. For convenience assume p < 03. Let Q: E -+L&), 
R: Lp(p) --t L&L) and S: L,(p) -+ F” satisfy IT = SRQ and 

llWIWII@II GU + +,,W h w ere R is diagonal multiplication 
by f E L,(p), q-l = r-l + p-l. Let dv = 11 f Il-” I f I7 dp, define 
A: E -+ L,(v) by A(x) = sgn(f) If l-r/p Q(X) and B: L,(v) -+F” by 

B(g) = Wf I”“d. It is easy to check that B JA = IT and that 

II A II < II Q II llfll-7’PI II B II < II S II II f Ilrlq. Since II R II = II f IL this 
gives the inequality for the ipp norm of T. 

Notice that from the proposition, Imp is exactly the ideal I, of all 
p-integral operators, and that Ifll is the dual ideal I,, of the p’-integral 
operators. 
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THEOREM 2.10. For 1 < q < p < co, r,, is a perfect ideal. 

Proof. The proof given here involves some complications of the 
arguments of [22]. Suppose 1 < q < p < co, and let T E 9(E, F). 
By Proposition 1.3 it is enough to prove that if yDq( UTV) < b for all 
finite rank U and V with norms at most one, then y&T) < b. 

Throughout the proof B(E) and B(F”) are the spaces of bounded, 
real valued functions on the closed unit balls of E’ andF”, respectively. 
For x E E and y’ E F’, fz and g,’ are the elements of B(E’) 
and B(F”) naturally associated with x and y’, respectively. The unit 
vector bases in &, and Zq are denoted by (ei , e,‘)+r and (b, , bk’)k,l . 
Z is the l-point compactification of the real numbers. 9 is the set 
of all ordered pairs (N, M), where N C E and M C 8” are finite dimen- 
sional subspaces. 59 is directed by declaring that (N, M) < (iVl , Ml) 
iff N C Nr and M C Ml . We now proceed to define a net 

(@(NJ.f)}(N,M)& c (2 x z x Z)~‘E”XB’F”’ 

in the following manner. 
Given (N, M) E 9, let V, be the inclusion of N into E and UM 

be the restriction map from F to M’. Then ypp( U,TVN) < b. Since 
each L1(p) space is L?‘l,l+c for all E > 0, there are natural numbers n 
and m, and operators AcNsM): N + IV”, B(N,M): 1,” -+ lqm, and 
C(N..d 4p -+ M’ such that 

C(N.M)B(N.M)A(N,M) = UMTVN, II A(N.M) II G 1, I/ C(N,M) 11 d 1 

and 

11 B(N,M) II < b[l + dim N-l + dim M-l]. 

We will write b(N, M) for the last displayed constant. For 
i = 1, 2,..., n, let x~’ E E’ be norm preserving extensions of the 
functionals &N,&e$‘). Similarly, let yi EF” be norm preserving 
extensions of C{N,+,)(bk), h = 1, 2,..., m. Let QcN,,,,) be the semi-norm 
on B(E’) defined by 

Q(N,M)(~) = ($;% I +f(si’)ly)1’p7 

StN,M) the seminorm on B(F”) defined by 

s(NsM)(g) = (rc, 1 &;)la’)l’q’ 
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and RtNsM) the bilinear form on B(E) x B(P) given by 

&N,M)(f,g) = + h%f) (iE f(xi’) ei)p k5m hi) b,‘). 
\ 

Now observe that 

ta) !&N,M)tfa) d /I x 11 for x E N; 

(4 s(N,M)t&‘) < 11 Y’ /I for Y’ E M; 
tc) I R(N.M)tf, 81 < b(Ny M) !&N,M)(f) s(N,M)tg) for fE B(E’)p 

g E B(P) ; and 

(4 R(N,M)tfz , gut> = (TX, y’> for x E N, y’ E M. 
Finally, let @(N,,) be the function on B(E) x B(P) defined by 
@(N,M)tf, g) = t!h’,M)tf), li (N,M)(f, g), s(N,M,(g))* 

The net so defined lies in a compact topological space (topology 
of simple convergence) so the filter sections of the net refine the 
neighborhood basis at some point @ in the space. Let Q, R and S 
be the functions given by @(f, g) = (Q(f), R(f, g), S(g)). It is easily 
seen that Q and S are extended real valued semi-norms on B(E’) 
and B(F”), respectively, and that from (a) and (b) the inequalities 
Qtf,) G II x IL Sk,,) < II y’ II are valid for all x E E, y’ EF’. Set 

x, = ife W) : Q(f) < 4, 

and define Yp, similarly using S. Then X, is a vector subspace and 
solid sublattice of B(E) under the pointwise operations and relations. 
Further Q(f f g)” = Q(f)” + Q(g)p whenever min(f, g) = 0 since 
each semi-norm Q(N,M) has this property. Write ep(f) for the equiva- 
lence class in X,/X, n Q-‘(O) which contains f. By Nakano’s 
theorem [26], the completion of this space under the norm 
II 4f III = Q(f) is isometric to a space L,(p). Similarly, the completion 
of Y,*/Y*< fl S-l(O) is isometric to some L,(v)-space. 

From (c) we have that 1 R(f, g)l < @2(f) S(g) for all f E X, , 
gs yqn > and from (d) that R(fz , g,,) = (TX, y’) whenever x E E, 
y’ E F’. Define A: E +&(p) by A(x) = eq(f%), C: F’ --+Lp,(v) by 
C(y’) = ep(g,f) and B: L&L) --+&s(v) = L,(V) so that 

Then 11 A 11 < 1, 11 C II < 1, and I/ B 11 < b. Further, if I is the natural 
inclusion of F into F”, then IT = CBA. This completes the proof. 

We now discuss the ideal Jpg . It will follow from Theorem 2.15 that 
j,, is a norm. However, it is clear that j,,( UTV) < I[ U 11 j,,(T) 11 V II 
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for all U, T and V. This fact will be used without further mention 
in the following two theorems. 

THEOREM 2.11. For 1 <q <p < co, SE&(&F) and 

T E .k,V, G), Ws) < G&‘W,,,,(T). 

If 1 < p < 00, then vl( TS) < &(S) j,t,t( T). 

Proof. For q = p this is given in [3]. Assume q < p. From the 
ideal structure of the operators involved we need only prove the 
theorem in the case E = L&p), F = L,(p) and S a diagonal map. 
By Proposition 2.9 we may assume that p is a probability measure 
and that S is injection. Let 7~ = (D&, be an arbitrary decomposition 
of the space underlying )1~; that is, 7~ is a pairwise disjoint collection 
of sets of positive finite p-measure. The natural norm one projection 
onto CX&gn is given by P,,(f) = kn p(&)-l (f, xD,> xDi . It will 
first be shown that ZJ TSP,) < j,,,(T). Define maps A: L&J) -+ Zpn, 

w, and C: z n -+&(P.) by A(f) = (P(W~/~’ <f, x~,))~G , 
&i-t;i;$= (Xip(Di)Qr) i<n and C(b&d = &in W(~c)-l'n XD, > 

where q-l = r-l + p-l. It is easily checked that A, B, and C are 
contractions and that SP, = CBA. To calculate the integral norm 
of TCB, let U: G -+ lpn be an arbitrary operator, represented by 
(gk’)liqn C G’. Then 

trace( UTCB) = c p(Di)-l/p( T(xD,), gi’). 
igll 

Let IT = RQ, w  h ere I is the natural embedding of G into G”, Q is 
q’-summing, and R’ is p-summing. Writing fi = ~(D&‘/‘J xDi we 
have that 

Taking the supremum over 11 U 11 < 1 and the infimum over factoriza- 
tions of T gives il(TCB) < j,,e( T), so that also ZJ TSP,,) = 
G(TCBA) < II A II j,e,V’) <j,,*(T). 
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It is well known [5] that the net (P,,), directed in the usual manner, 
converges simply to the identity on L&A). Thus, (TSP,,) converges 
simply to TS, and so TS is integral with i,(TS) <j,,,,(T). For 
1 <p < co, the results of Theorem 10 of [12], shows that 
vl( TS) = il( TS). 

Using the factorization definitions and a standard duality argument 
it is easy to check that $,(T’) = iptp(T) and j,,(T’) = j,,,,(T) for 
every operator T. From [12, Proposition 1.51, it is known that an 
operator is integral iff its adjoint is integral, and that an operator with 
nuclear adjoint is nuclear into the bidual of its range. 

COROLLARY 2.12. For 1 < q < p < 60, T E J,l,,(E, F) and 
S EI~&F, G), i,(ST) < ipp(S)jprp(T). If 1 < q < co, then ST is 
nuclear as an operator from E into G”, and v,(ST) < i,,(S) j,,,*( T). 

COROLLARY 2.13. If 1 <p < co, S ~l;f(E, F) and T E 17,‘(F, G), 
then vl( TS) < ip*(S’) 7~p( T’). 

Proof. By Theorem 2.11 vl(TS) < i&S) j,,(T). But ipl = 
iapt = inf , and japf = rrTTp’ by taking stars (*). 

COROLLARY 2.14. Let 1 < q < co, S EI,‘(F, G), T E I&(E, F) 
and i: G + G” be the inclusion map. Then iST E N,(E, G”) and 

v&ST) ,< i,(s’) .rr,‘( T’). 

THEOREM 2.15. For 1 < q <p < CO, ip*, = jpFpt . 

Proof. The first claim is that i&(T) <j,,,*(T) for T E 9(E, F). 
Let X and Y be finite dimensional spaces, U E 9(X, E), V E 2(F, Y) 
and S E Z(Y, X). Then by Lemma 2.2 and Theorem 2.11 

1 trace(SVTU)I < i,(SVTU) < i,,(SV)j,yD,(TU) < i,(S)11 U/l II Vllj,~,,(T). 

By definition this gives z&(T) < j,,,,(T). 
Now suppose T GI&(E, F). For (A&<% C E, (JJ$‘)~~~ CF’ and 

a = (ai)i(n E I,“, q-1 = r-l + p-1, let U: lqn --+ E and V: F -+ 1,” be 
the operators defined by the series, and R: 1,” -+ 1;” be diagonal 
multiplication by (a,)iCn . Then 
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Taking the supremum over 11 a Ilr < 1 gives 

By Lemma 2.7 

Let KI C E’ and K, CF” be the weak-star closures of the extreme 
points of the closed unitballs and set K = KI x Ka . For 
(x, Y’) E E x F’ let TJ(~,~‘) be the element of C(K) given by 

?%,Y’)(X’, Y”) = V/q’) I(% ap + V/P) KY’, Y”>l”* 

Let A be the closed convex hull of {qqz,l/t) : \(Tx, y’)] = l> and 
B = {f E C(K) :f(t) < i&(T)+” for all t E K). Then A and B are 
disjoint convex sets with B open; in fact, if q(zi,y,‘) satisfy 
I(Txi ,yi’)l = 1, i = 1, 2 ,..., n, 0 < & < 1 and CicnXi = 1, then 

bY (1) 

i;q(zy’ = i;py c Ai ~(Tx, ) yJl” 
i<n 

By the separation theorem for convex sets and the Riesz theorem, 
there is a probability measure cr on K such that i&(T)-r’ < u(f) for 
f E A. This gives 

whenever I( TX, y’)l = 1. Replacing X, y’ by tx, t-4’ and applying 
Lemma 2.7 gives 

i;*< q-r’ < (s, I<% Ol”’ q’*’ (J; KY’, s>l” qr”: 

whenever I( TX, y’)l = 1, which in turn implies 

I(% Y’>l < $p) (J, I<% W’ do)liP’ (s, KY’, s>l” qp 
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for all x E E, y’ EF’. Arguing exactly as in [18] shows that 
j,,( 2’) < i,*,(T), which completes the proof. 

For later use we give two corollaries to the proof of the theorem. 

COROLLARY 2.16. Let 1 < q <p < co, b > 0 and T E 9(E, F). 
Then j,,(T) < b ;sf, for all finite sets (x&~~ C E and ( yi’)i(n C F’, 

(g I(% J Yi’q’ G k.Gi) %,(Yi')> 

where r-l = (4’)~’ + p-l. Further, j,,(T) is the smallest such constant b. 

COROLLARY 2.17. Let 1 < q < p < CD, b > 0, T E 9(E, F), 
K1 C E’ and K2 CF” the weak-star closures of the extreme points of the 
closed unit balls. Then j,,(T) < b ;sf there are normalized Radon 
measure p and v on K1 and K2 such that, for all x E E and y’ EF’, 

IGQ, Y’>l d b (lK, I(? w P(dqp (lK2 KY’, W’ .(ds)y*‘. 

Further, j,,(T) is the smallest sue constant b. 

COROLLARY 2.18. Jpp is a perfect ideal. 

Proof. Every adjoint ideal is perfect. 

COROLLARY 2.19. Let T E Z(E, F) and 1 < q <p < co. If 
1 < p < 00 and F has a.p., then i&(T) = i,*p( T). If 1 < q < 03 and 
E’ has a.p., then i&(T) = i&(T). 

Proof. In the first case let S E 9(F, E). By Theorem 2.11, 

4 TS) G ipqw j,,*(T) = &(S) i&(T). S inceFhas a.p. 1 trace(TS)J < 
~i( TS), which gives i&(T) < i&(T). The other case is similar. 

Remark. (1) The preceeding corollary and the relations Imp = ID , 
IPP = r, give sharpened versions of Theorem 2.5. (2). For T E 9(E, F) 
and 1 < q < p < co, one can prove i&(T) = i&(T) using the method 
of Theorem 2.5(d). The difference is that the proof uses Theorem 2.11 
instead of the cited result of Cohen. It follows then that ig = j&, . 

PROPOSITION 2.20. Let T E DLp(E, F), c be a constant and suppose 
4(ST) < 4s) f or every finite dimensional G and S E A(F, G). Then 
a*(T) < c. 
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Proof. Let X, Y be finite dimensional, U E 9(X, E), V E 6p(F, Y) 
and S E A(Y, X). Then 

1 trace(USVT)I < 11 U 11 /I SVTII” 

= II ull WW 
G c II w 4w 
< c II u II II v II 4% 

so that a*(T) < c by the definition. 

COROLLARY 2.21. Let T E 9(E, F) and suppose that A(F, G) is a 
Banach space for every G. If ST E I,(E, G) whenever S E A(F, G), 
then T E A*(E, F). 

The proof follows from the well known technique of Nachbin [25]. 
Another variant of Proposition 2.20 is Proposition 2.22. 

PROPOSITION 2.22. If T E Z(E, F), E has m.a.p. and i,(ST) < Cx(S) 
for all S E 9(F, E) then a”(T) < C. 

Proof. By Lemma 2.2, 1 trace(ST)\ < i,(ST) < &(S); hence, 
c@(T) < C. 

Although Ipq may be nonperfect,l we have the following theorem. 

THEOREM 2.23. Consider the following statements, where 1 < q < 
p < 00: 

(a) T E I,#% F) ; 
(b) For every G and S E 17,(F, G), ST EIJE, G); 

(c) T E I&$(E, F). 
Then (a) implies (b) and (b) implies (c), and always ipI < 
v(S) 4&o 

Proof. Suppose T E I&E, F) and let S E l&,(F, G). For any 
R E I&(G, H) = Jmp(G, H), RS E J,,,r(F, H). By Theorem 2.11, 

NW E w.L fJ) and i,(R(ST)) < j,~,@S) i,(T) < &(R) rot(S) i,(T) 

By Proposition 2.20, i&ST) < T**(S) ip& T). 
Let U E I&(F, H) = J,*,,(F, H), and factor IU = VS, S E +(F,G), 

V E D,(G, H”) and I the embedding of H into H”. By (b) 
ST E&(E, G), hence, (ST)’ eI,r(G’, E’) and (ST)’ V’ EI~(H”‘, E’), 
which implies VST EI~(E, H”). Again from Proposition 2.20, 
T E I,*,*(E, F). 



106 GORDON, LEWIS, AND RETHERFORD 

THEOREM 2.24. If E’ or F has m.a.p. and T E C,(E, F), then 

cm = Gm- 

Proof. The inequality yp( T) < c,(T) always holds. First consider 
the case in which T is a finite rank operator. Let I be the natural 
embedding of F into F” and write IT = VU, where U E L??(E, L,,(p)) 
and V E dip&&), F”). 

Assume that F has m.a.p., and let E > 0. By [16] there is an 
R E 9(F, F) satisfying 11 R 11 < 1 + E and RT = T. Then R”V is a 
compact operator from L&) to F, so by [15] R”V = BA, where 

A E C(&(P), I,), B E C(Z, , F) and II A II II B II < (1 + 4 II R”V II. Then 
T = B(AU) and c,(T) < II B 11 I/ AUII < (1 + E)~ II VII II U I/. Since 
the factorization and E > 0 were arbitrary, c,(T) < yp(T). 

Now assume that E’ has m.a.p. and let E > 0. As before choose 
R E 9(E’, E’) so that RT’ = T’ and II R II < 1 + E. Write J for the 
natural embedding of E into E”, P for the restriction from F”“’ onto 
F”, A = PV” and B = (RU’)’ J. Then IT = AB, II A /I II B II < 
(1 + 6) Ij VII II U II and B is finite rank. B(E) is a finite dimensional 
subspace of the $pp,l+E -space&(p)“, so there is a finite dimensional G, 

B(E) C G Cup”, and an isomorphism S: G --+ Zpn with 1) S II /I S-l I/ < 
1 + E. By the local reflexivity principle [23] there is an isomorphism 
Q: A(G) -+F with Ij Q II < I + E and QIy = y for ally E I(F) n A(G). 
Finally we have that 

T = (QAV)(SB) and c,(T) < II QAS-l II II SB II < (1 + 4” II P’ II II u II, 

as before this means that c,(T) < yp( T). 
An arbitrary T E C,(E, F) factors as T = AB, B E C(E, I,) and 

A E C(Z, , F). Let P, be the projection of Zp onto the span of the 
first n unit vectors. Certainly the sequence (AP,B) converges to T 
in both c,(m) and 3;3(*) norm, and by the preceeding paragraphs 
c,(AP,B) = y&AP,B) for each n. Passing to the limit gives 

c,(T) = YG’). 

COROLLARY 2.25. If E’ has m.a.p., T E C,(E, F) and S E J,(F, G), 
then ST is nuclear and v,(ST) < c,(T)jpf(S). 

Proof. By Theorem 2.11 we have that ST is integral and that 

4W) G MJ MS), and, hence, i,(ST) < c,(T) j,(S) by Theo- 
rem 2.24. Fix S and consider the mapping from C,(E, F) into I,(E, G) 
which sends T to ST. By the above remarks this mapping is contin- 
uous. Since E’ has m.a.p., N,(E, G) C I,(E, G) isometrically and it is 
clear that T -+ ST sends each finite rank S to an element of N,(E, G). 
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But the finite rank operators are dense in C,(E, F), so ST E N,(E, G) 
for every S, and v,(ST) = i,(ST). 

Similar reasoning establishes the following corollary. 

COROLLARY 2.26. If F has m.a.p., S E J,(H, E) and T E C,(E, F), 
then TS is nuclear and yl( TS) < c,(T) j,,(S). 

From Theorem 2.24 above we gain a description of the dual of 
C,(E, F). Each functional q~ E C,(E, F)’ naturally defines an operator 
S E Z?(F, E”) by (x’, Sy) = (x’ By, q~). 

THEOREM 2.27. If E’ or F has m.a.p., then C,(E, F)’ = J,(F, E”) 
naturally and isometrically. The action is given by 

(T, S) = trace(ST), if E’ has m.a.p.; 

(T, S) = trace(T”S) if F has m.a.p. 

(In the$rst case ST E N,(E, E”), and in the second T”S E N,(F, F).) 

Proof. We give the proof when F has m.a.p. Let SE J,(F, E”). 
Then for every T E C,(E, F) we have by Theorem 2.5(c) and 
Lemma 2.3 that T”S EI~(F, F”) and i,(T”S) < yP( T”)j,(S). But 
yP( T”) = yP( T) and .yP( T) = c,(T) by Theorem 2.24. The operator T 
is compact so TVS maps into F, and so T”S E Il(F, F) and 
il( T”S) < c,(T) jp,(S). C onsider the operator from C,(E, F) to I,(F, F) 
which maps T to T”S. Since F has m.a.p. N,(F, F) CI,(F, F) iso- 
metrically. Certainly the map T -+ T”S sends each finite rank T to 
an element of N,(F, F). But then by continuity and the density of 
the finite rank operators in C,(E, F), we have that T”S E N,(F, F) 
for every T E C,(E, F), and further that ur( T”S) < c,(T)&,(S). This 
means that the second displayed formula is meaningful (F has a.p.), 
and that the formula defines a functional F E C,)(E, F)’ which satisfies 
II 9J II G &m- 

To complete the proof it is necessary to show that given 
q~ E C,(E, F)‘, there is an S E J,f(F, E”) which represents ~JI by the 
second displayed formula and which satisfies j,,(S) < ]I rq~ 11. Given q~, 
define S by (x’ @ y, y> = (x’, Sy). For (Y&<~ C F and (x~‘)~<~ C’E’, 

1 1 (Xi’, %Ji) / = KR v)l 
i$?a 

where R = CiGrr xi’ @ yi . By [3] this means that 1 @ S induces 
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a mapping from ID, g F into 1,~ @ E” C (I, ‘6 E’)’ of norm at most 
11 v /I, so that j,(S) < /j v 11. Finally, v and the functional defined by S 
agree on finite rank elements of C,(E, F), so by the continuity of both 
functionals, (T, v> = trace( T”S) for all T E C,(E, F). 

COROLLARY 2.28. Let T E p(E, F) and I be the natural embedding 
of F into F”. If IT E C,(E, F”) and either E’ or F” has m.a.p., then 
T E C,(E, F) and c,(T) = c,(IT). 

Proof. Assume that E’ has m.a.p., and let SE J,,(F”, E”) = 
C,(E, F”)’ be a functional which vanishes on the image of C,(E, F). 
Then (x’, Sly) = 0 for x’ E E’ and y EF, so SI = 0. Then also 
SIT = 0, so (T, S> = trace(S(IT)) = 0. It follows from the Hahn- 
Banach theorem that T E C,(E, F). 

The case in which F” has m.a.p. is similar. Note that by Grothendieck 
proposition 40 [12] F has m.a.p. if F” does. Thus, by Theorem 2.24 
c,(R) = y,(R) = yp(IR) = c,(IR) for each R E C,(E, F), that is, we 
may consider C,(E, F) _C C,(E, F”) isometrically. Following the same 
argument as above, T”S is o(F”, F’), a(F, F’) continuous from F” to F, 
and vanishes on F. 

COROLLARY 2.29. Suppose that E’ OYF" has m.a.p. Then T E C,(E, F) 
zjT T’ E C&F’, E’), and in either case c,(T) = c,r( T’). 

Proof. Certainly if T E C,(E, F) then T’ E C,QJ’, E’) and 
c,,(T’) < c,(T). Conversely, if T’ E C,(F’, E’) then IT = T” j E is 
in C,(E, 8”‘) and c,(IT) < c,,(T’). The desired conclusion now 
follows from the preceeding corollary. 

The only nontrivial fact in Table I which now lacks proof is that 
(Np)’ = Np with equality of norms. This result follows from the 
definitions involved and an argument similar to that used in Corol- 
lary 2.28. 

3. SOME APPLICATIONS TO 2$-SPACES 

We now apply some of the previous results to obtain several 
theorems concerning the oSP,-spaces of Lindenstrauss and Pelczynski 
[22]. In particular we prove an omnibus theorem which includes 
results of Cohen [4], Holub [14], Johnson [15], Kwapien [18, 191 
Lewis [21] and Persson [27], as well as some new results. All results 
proved below are valid for gP-spaces. 

Our first proposition is routine and so the proof is omitted. 
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PROPOSITION 3.1. If [A, IX] and [B, /I] are Banach ideals and E 
and F are such that [A(E, F), a] C [B(E, F), fi] and a(T) < j?(T) for 

every T E B(E, F), then [A(E, F), ,8] is a Bunuch ideal and /3 is equivalent 
to 01. Hence, [Ad(F, E), aA] = [Bd(F, E), PA] in this case. 

Proposition 3.1 allows us to work with inclusions instead of equality 
in our various applications. 

We first give short proofs of results of Cohen [3] and Persson [27] 
which will be used in the proof of the main theorem. 

THEOREM 3.2. For any Bunuch space G, 

r,*(&, , G) = J,G, , G) = W, 9 (3. 

Proof. Clearly 9(G, L,) = F,(G, L,) with equality of norms, 
hence, g4”(L, , G) = Fpd(L, , G), and the result follows by Theo- 
rem 2.5. 

We recall that Kwapien’s representation theorem for .F,*(L, , G) 
says that T E r,*(L, , G) if and only if T = UV where V is 
p’-absolutely summing and U’ is p-absolutely summing. We remark 
that the above theorem is false if the role of the operators U and V 
are interchanged. Indeed, let T E fl,(Za , 1,)\1,(1, , 1s) (any nonnuclear 
Hilbert-Schmidt operator suffices). Then T factors 

But F’ E D&s , C(K)) [22] and U E 17,(C(K),L,) [22] but UV = T 
is not integral. 

We now give a new proof of a result of Persson [27]. 

THEOREM 3.3. Let E be a Bunach space. If T E 17,,(L, , E), then 
T’ E I,(E’, L,*) and rp,( T) 3 i,,( T’). 

Proof. Let S E (IL*)* (E, G) = (If/)’ (E, G) = n,‘(E, G). If 
T E ITp&, , E), ST E J,e(L, , G) = I#, , G) by the above theorem. 
Thus, by Corollary 2.21 T E ILe(L, , E) or T’ E I,(E’, Lpf). 

As an immediate corollary we obtain a result analogous to Theo- 
rem 3.2. 
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COROLLARY 3.4. If r 3 q and l/s = l/r + l/q’, then I’,*(L, , E) C 
11,(L, , E) and, thus, (taking conjugates) lIs,(E, LJ C r,(E, L,). 

We now give an alternative proof of a result which was first proved 
in [34]. 

THEOREM 3.5. Let E be a Banach space. Then E is a /&-space if 
and only if I7,(E, F) = I,(E, F) for all F. 

Proof. Suppose first that Ill(E, F) = I,(E, F) for all F. Thus, for 
any finite dimensional F we have I,(F, E) = D1”(F, E) = I,“(F, E) = 
A?(F, E) with a uniform bound comparing the equivalent norms and 
so E” is injective [23]. Thus, by [23], E is an gw-space. 

For the converse, if E is an PE-space, then E” is complemented in 
&,(p) for some p [22], and if T E II,(E, F), then T” E I7,(E”, F”) and 
so by Theorem 3.3 57”’ E I,(F”‘, I?“‘), and, hence, T E I,(E, F). Theo- 
rem 3.5 is also true if the roles of E and F are interchanged. 

We can now give our main result. 

THEOREM 3.6. Let 1 <p < co. The following statements about 
the Banach space E are equivalent: 

(a) I E r,(E, E), I the identity on E; 

(b) r,(F, E) 2 C(F, E) for all F; 

(c) T’,,(E’, F’) I C(E’, F’) for all F; 

(d) r,(E, E) 2 C(E, E) and E has m.a.p.; 

(e) r,*(E, F) = I1(E, F) for all F; 

(f) r,*(F, E) = I,(F, E) for aZZF; 

(g) r,*(E, E) = I,(E, E) and E has m.a.p.; 

(h) for every Banach space G, and every adjoint operator 
W’ E 17,(E’, G’) one has WE IJG, E); 

(i) If V E IT,,(E, G), then I” EI,,(G’, E’); and 

(j) r,(E, F) 1 C(E, F) for all F. 

We give the proof first for 1 <p < co and then discuss the 
necessary modifications for p = 1 or GO. For the proof of (b) 3 (a) 
observe that C(F, E) C r,(F, E) implies that there is a constant C 
such that rp(T) < C 11 T/I f or all F with m.a.p. and all T E C(F, E). 
For, if this is not the case there is a sequence of Banach spaces (F,), 
each with m.a.p., and T, E C(F, , E) such that I] T, ]I = 1 and 
yP( T,) > n3. Let F = z:,” @F, (with c,-norm) and define T: F + E 
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by T(f,) = Cl” Tnfn/n2, and let Qn: F, -+ F be the natural inclusion 
map. Then T E C(F, E) and so to r,(F, E). Thus, T factors: 

with 11 b 1111 a-11 < y,(T) + E. But TQn = T,/n” and so y,(T) 3 
yP( TQ,) > 1z, i.e., yP( T) = + co, a contradiction. 

Thus, let F = Zr(r) and T: II(r) -+ E a surjection. From the table 
we obtain r,(Z,(r), E) 2 J’g(&(.ZJ, E) 1 C”“(Z,(r), E) = S(Zl(r), E). 
Thus, T E r,(Z,(r), E) and since 1 <p < co, E is reflexive. Order 
the finite dimensional subspaces F of E by Fl < F2 if and only if 
Fl C F, and let iF: F -+ E be the injection map. By the above argument 
we obtain a C > 0 such that yp(iF) = yp(liF) < C I\ iF 11 = C and it 
follows that I factors through Lp . 

(b) - (c): As we saw above, (b) implies E is reflexive. Thus, if 
T E C(E’, F’) then T’ E C(F”, E”) = C(FN, E) and so by (b) 
T’ E r,(F”, E). Thus, T” E r,(E’,F”) and since T” maps into F 
T E r,j(E’, F’). 

(c) => (b) follows in the same fashion. 

(d) 5 (a): Since E has m.a.p. we have r,(E, E) = I’$*(& E) 2 
I’F(E, E) I P(E, E) = OLp(E, E). 

(a) => (d) follows since any&(p) has m.a.p. 

(a) =+ (e): Now (a) says that 2’(F, E) = r,(F, E) for all F and so 
I,(E, F) = 2YA(E, F) = rpd(E, F) C r,*(E, F) C I,(E, F) (the last 
inclusion follows from Theorem 3.2). Thus, I’,*(E, F) = I,(E, F). 

(e) * (a): For any F with m.a.p. we get r,(F, E) = I’,“*(F, E) 1 
r$‘(F, E) = 1 ( I A F, E) = ,Ep(F, E). Letting F vary over the finite 
dimensional subspaces of E yields (a). 

fac$ZrZa!E W 
e 

h 
ave by (a) that E is reflexive and so we obtain the 

I 
l E 

E\ /f rJ V 

=ll 

If w’ E l’Ip(E’, G’), W’U’ E 17,(L,, , G’) and so by Theorem 3.3, 
UW E I,(G, L,) and, thus, VUW = WE I,(G, E). 

580/14/I-8 
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(h) =S (f): Let UE r,*(F, E). By Theorem 2.15 there exists G, 
VE 17,(F, G) and IV E 17,(E’, G’) such that U = WV. By (h) 
WEI,(G, E) and so by Lemma 2.3 U = WV E 1,(F, E), i.e., 
r,*(F, E) 2 I,(F, E) an d so by Theorem 3.2 we have equality. 

(f) 3 (a): For all F with m.a.p. we obtain r,(E, F) 2 I’zd(E, F) = 
iTid(E, F) = Z(E, F) and it follows that S(F’, E’) = I”,(F’, E’) for 
all F” with m.a.p. It follows as before that the identity on E’ factors 
through Lp* and so the identity on E factors through Lp . The proof 
of the equivalence (a) u (g) is similar to that of (a) * (d). 

(a) => (j) is obvious. 

(j) S= (a): (j) implies that r,t(F’, E’) 3 C(F’, E’) for all F’ which, 
as before, implies (a). 

(a) =P (i): This implication is the same as the proof of Theorem 2.23. 

(i) rj (a): (i) implies 1 E r:*(E, E) = r,(E, E) since rP is perfect. 
Most of the implications for p = 1 or co are proved in much the 

same fashion as above. We indicate a few of the differences. 

(a) * (c) for p = co. Let T E C(E’, F’). Then by (a) (since E” is 
complemented in E”“) I” factors 

and so I’ factors through L, and so T E r,(E’, F’). For p = 1 the 
implication (a) * (c) is analogous. 

The equivalence (a) o (h) for p = co is as follows: If I E P,(E, E) 
then E is an 9’m-space and so has m.a.p. Also by Theorem 3.5 
I,(G, E) = n,(G, E). Thus, eY(E, G) = Ild(E, G) = L!,“(E, G) = 
I,(& G) which is (h) when p = co. The implication (h) * (a) is 
trivial since I&E, E) = r,(E, E). 

For p = 1, if I E r,(E, E) then E’ is an gm-space and so 
17,(E’, G’) = I,(,??‘, G’) for any G’. Thus, by a result of Grothen- 
dieck [12] if T’ E 17,(E’, G’) = I,(E’, G’), T E I,(G, E). On the other 
hand, if w’ E l7,(E’, G’) im pl ies WE _I,(G, E) we have 17,‘(G, E) = 
I,(G, E) and since E has m.a.p. 

I’,(E, G) = I,,(E, G) = I,‘(E, G) = @‘(E, G) 

= 17;“(E, G) = I/(E, G) = 8(E, G) 
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for any G with m.a.p. Thus, r,*(G, E) = I,(G, E) which is (f) for G 
with m.a.p. However, this was all that was needed to prove (f) +- (a). 

The equivalence (a) o (i) uses Theorem 2.23. The other implica- 
tions are proved in essentially the same manner as above, using the 
result (a) 3 (c) to avoid the use of reflexivity. 

We now prove some results which give operator characterizations 
of finite dimensional spaces. Our initial result of this nature was first 
given in [24]. 

THEOREM 3.7. If E has m.a.p. and C(E, E) C I7,(E, E), then E is 
Jinite dimensional. 

Proof. From the fact that nP is perfect and E has m.a.p. we obtain 
dp(E, E) = C”“(E, E) C I7f(E, E) = IIJE, E). Thus, the identity 
operator on E is p-absolutely summing. By [29] E is finite dimensional. 

THEOREM 3.8. Let E have m.a.p. and 1 < p < + 00. If I,(E, E) = 
I,(E, E) OT N,(E, E) = IVJE, E) then E is finite dimensional. 

Proof. In either case we obtain IIpl(E, E) = Z(E, E) and again 
it follows that E must be finite dimensional. 

We end this section with two results in the spirit of [32]. We 
remark that there are numerous results of this nature which may be 
obtained from the preceeding results. 

THEOREM 3.9. Let 00 > s >, p > 1 and l/r = l/s + l/p’. Then 
yp*( U) >, i,.(U) for all U E S(E, LS). 

Proof. If U E I’,*(E, L,) and E > 0 there exists WE I&,(,?& G) and 
V’ E IIJL,‘, G’) such that U = VW and 

ys*( U) 3 Trp’(W) Tr2)( vl) - 6 >, ~p,(W> ns(Jq - E 

> %-,qv)i,(V) - E > ir(VW) -E = i,(U) - E. 

The above inequalities result from Theorem 3.6(h), the fact that 
7ra < rb for b < a, and the composition formula of [29]. 

COROLLARY 3.10. Let CO > s > p > 1 and 1 /Y = l/p’ + l/s. Then 
for any U E -1;4(L,, E), v(U) > yp( U). 

The proof is obtained by taking conjugate ideals. 

Remark. From Theorem 3.9 we have in addition that for any 
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closed subspace F C&(p), if I: F -+ L.&) is the inclusion map and 
T E P(E, F), then 

and taking conjugates, i,.(U) > yP( U) for all U E 9(F, E). In par- 
ticular, taking s = 1 and E = F, one obtains the result of [45], that 
the projection constant of F is greater than or equal to the projection 
constant of F’. 

4. REFLEXIVITY OF U,(E, F) 

Clearly if 17,(E, F) is reflexive then both E and F must also be 
reflexive. In this section the converse will be proved if E has a.p. 
This answers a question raised by Saphar [37]. 

First let us recall the definition [13] of 1 IA, , the greatest right 
injectiwe @-norm; given Banach spaces E and F with F C C = C(S) 
isometrically, E Q F may be defined as the closure of E @F in 
E @ C. It is known from [13] that there is a natural norm decreasing 
map from E’ @ F into 17,(E, F), and that this natural map is an into 
isometry whenever E’ has m.a.p. 

The following lemma is well known in another form [28]; however, 
it is crucial to the proof of the theorem, so a brief proof is given. 

LEMMA 4.1. If E is reflexive and has a.p., then E’ g F = 17,(E, F) 
naturally and isometrically. 

Proof. From [12] E’ has m.a.p., so by the remarks above the 
natural map is an into isometry. To show that the natural map is 
onto let U E 17,(E, F) and F C C = C(S) isometrically. Then U is 
integral as an operator into C, so by [12] U is nuclear as an operator 
into C. By the definition of 1 I,,, it is enough to prove that U is in 
the weak closure of E’ @F in E’ @ C. 

Let A E (E’ @ C)’ = 9(C, E”) be any functional vanishing on 
E’ @F. Then (U, A) = (( 1 @ A)(U), tr), where tr is the functional 
on E’ @ E” induced by ( , ). If V is the operator from E’ to E’ 
defined by (1 @ A)(U), th en V = (AU)’ 1 E’. Since U(E) C F and 
A 1 F = 0, V = 0. By [12], (U, A) = (( 1 @ A)(U), tr) = 0, since 
E’ has a.p. 

THEOREM 4.2. If E and F are refixive as E had a.p., then 
17,(E, F) is refixbe. 
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Proof. We will prove that an arbitrary sequence (U,) in the closed 
unit ball of J7,(E, F) h as a weakly convergent subsequence. First notice 
that by Lemma 4.1 each U, is compact, so there is a separable subspace 
F, of F such that U,(E) CF, for all 12. Since ni(E, F,) C 17,(E, F) 
isometrically, it is enough to show that some subsequence converges 
weakly in Tr,(E, F,,) to an element of IT,(E, F,,). Thus, in the remainder 
of the proof we may assume that F itself is separable. 

The first claim is that (U,) has a subsequence which converges in 
the weak operator topology to an element of 17,(E, F). The space F 
is separable and reflexive, so F’ contains a countable set D whose 
linear span is norm dense in F’. For y’ ED and each 1z we have 
11 U,‘y’ 11 < ni( U,) 11 y’ II < II y’ 11. By appealing to the reflexivity of E 
and using a diagonalization argument we may assume, by passing 
to a subsequence if necessary, that (17~‘y’)~>~ is weakly convergent 
for each y’ ED. It follows that for each x E E the sequence (U,x) 
must be weakly Cauchy in F; in fact, given z’ EF’ and E > 0, choose 
y’ in the linear span of D so that II z’ - y’ 11 < E. Then 
I( U,x - U,x, z’)l < 2 11 x 11 E + 1(x, U,‘y’ - U,‘y’)/, and the last 
term converges to zero because (U,‘y’) is weakly convergent in A”. 
The space F is weakly sequentially complete so UX = wk - lim, U,x 
exists for each x E E. The function U is linear and is bounded by the 
Banach-Steinhaus theorem. From the finite series definition of the 
l-summing operators it is also clear that U must be l-summing and 
that 7~i( U) < lim supn nl( U,) < 1. 

Therefore, in the remainder of the proof we may suppose, by 
subtracting the weak operator limit if necessary, that ni( U,) < 1 and 
that (U,) converges to zero in the weak operator topology. It will be 
shown that this implies that (U,) converges to zero weakly in R;(E, F). 

Let A E 17,(E, F)’ = (E’ $j F)’ and choose a compact Hausdorff S 
so that there is an isometric embedding J of F into C = C(S). Now 
1 @ J is an isometric embedding of E’ @ F into E’ $ C, so by the 
Hahn-Banach theorem there is a B E (E’ @ C)’ = dp(E’, M(S)) such 
that II A II = II B (I and (U, A) = ((1 @ J)(U), B) for all U E 17,(E, F). 
The extension of B @ 1 defines an operator from E’ g F to 
M(S) @ F of norm at most II B II, and by [12, Corollary 3, p. 611, 
M(S) BP= M(S)@F isometrically. Consider J’ E LP( M(S), F’) = 
(M(S) @F)‘. By checking elementary tensors it is easy to see that 

<u, A) = ((B 0 1)(U), J’> 
for all U E n,(E, F). Each of the tensors (B @ I)( U,) induces a 
nuclear operator fromF’ into M(S), and by [12, Theorem 11, p. 1413, 
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each such operator maps the closed unit ball of F’ into the set of 
measures dominated (in the natural order of M(S)) by some positive 
tag . Let p = &r 2-” /I pn. 11-l pn . Since Lr(p) C M(S) is the range 
of a norm one projection P, L,(p) @F is naturally isometrically 
contained in M(S) @F and P @ 1 is a projection of M(S) @F onto 
h(p) @F = UP, F). Let fn E &(EL, F) be (P 0 1 )(B 0 I)( U,) = 
[(PB) @ l](U,). Then for each n 

and 

< ~rw~)’ XD)), Y’> = <fn > XD 0 r’> 

for every Bore1 set D C S and y’ E F’. By the first equality the proof 
will be complete if we show that (fn) converges to zero weakly in 
L&A, F). By [2] this will follow if 

(a) Ja f, dp -+ 0 weakly for every Bore1 set D C S; and 

(b) the sequence (11 fJ*)il) CL,(p) is uniformly countably addi- 
tive. 

The first condition holds since, by the natural identification 

J% F) = U4 63 F, 

= ("nt(pB)' (xD))>Y'>, 

and because we know that (U,) converges to zero in the weak operator 
topology. 

To establish the second condition suppose the contrary. Then 
there is a 8 > 0 and a pairwise disjoint sequence (Dd) of Bore1 sets 
such that 

for each m. Choose an increasing sequence (mk)kal and a sequence 

(=k)k>l so that 

mkf-l/ llfn,ll+ > 6 
e=m, D, 

for each k. Let A, be the Bochner indefinite integral offmk , so that the 
total variation of A, over D C S is given by V(X, , D) = JD ]I fn, jl dp. 
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By the previous inequality and the definition of z& , *) there is an 
increasing sequence (t,),>, of positive integers and a pairwise disjoint 
collection (G&r of disjoint Bore1 sets so that, for each k, 

and 

h+1-1 “ki 1-l 
u Gj = u Di 
j&k i=mnc 

t kfl-l 

C II UGj)lI > 6. 

j=t, 

For t, < j < tk+l choose euj’ EF’ satisfying 11 wi’ 11 = 1 and 
11 h,(Gj)II = I(h,(Gi), w~‘)I. The series xi Xc, is weakly uncondi- 
tionally Cauchy in I+&) because the G3.‘s are pairwise disjoint. Thus 
& (PB)’ (Xc,) is weakly unconditionally Cauchy in E, and, hence, 
unconditionally convergent because E is reflexive. Choose k so that 

&+1-l 

,,,“;p<, g Iw4 (XGJ, &I -=c a/2. . 

Then summing for t, < j < t,,, we have 

6 < c KUG,), wj’>I 
j 

= c I( unk((pB)’ (XC,)), wuj’)l 

< c 11 un,((pB)’ (xG,))il 
i 

d ‘h($) Sup c l(tpB)’ (XC,), x’)l 
SS'HGl j 

< s/2. 

This contradiction completes the proof. 
From [13] recall the definition of the Zeast right projectiwe @-norm 

I Iv/ ; given Banach spaces E and F, with Q: L&L) -+F a quotient 
map, E G/ F is defined so that 1 @ Q induces a quotient map from 
E “0 J&(P) onto E @F, where I IV is the least @-norm. 

COROLLARY 4.3. If E and F are rejexive and E has a.p., then both 
E @F and E &IF are reflexive. Further, (E @\ F)’ = E’ al F’ and 
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(E @ F)’ = E’ @F’, where both identi$cations are natural and 
isometric. 

Proof. By [ 131 and L emma4.1 (EGIF)’ = i71(E,F’) = E’ @F’. 
By Theorem 4.2 (E’ @IF’)’ = (E $$)I F)” = E @i F. 

THEOREM 4.4. Let E, F be rejkxive with F having a.p. If T E Z(E, F) 
factors through a C(S)+ ace, then T factors compactly through cO . 

Proof. Define 9 E III(F, E)’ by y(S) = trace( TS). Since 17,(F, E) 
is reflexive, F E II,(F, E)’ = N,(E, F)” = N,(E, F). 

5. APPLICATIONS TO HILBERT SPACES 

In this section we study the norms ipp and j,, for operators between 
Hilbert spaces. In particular we compute the relative projection 
constants of isometric copies of Hilbert spaces in L,-spaces. 

DEFINITION 5.1. Given a Banach space E and a compact topolog- 
ical group G, a (G, E)- re p resentation is a continuous homomorphism 
g --t agE of G into the group of isometries of E. Say that T E A?(E,F) 
is invariant under the (G, E), (G, F)-representation, if TagE = agFT 
for each g E G. 

We shall need the following lemma, which is a generalization of 
Corollary 1 of [ll]. 

LEMMA 5.2, Let E, F be n-dimensional and T E 9(E, F) be invert- 
ible. Suppose S E 9(E, F) is invariant under the (G, E), (G, F)-repre- 
sentations if S = AT for some scalar A. Then for every ideal norm LY, 
W’(T) a(T-I) = n. 

Proof. Let L E 9(F, E) be such that or(L) = 1 and a+(T) = 
trace(LT). Let dg be the normalized Haar measure on G, and define 
L, E s(F, E) by 

Lo = 1 
G 

af-ILagF dg. 

By the invariance of T we have 

LOT = s 
G 

a:-,LTagE dg 

and by the translation invariance of dg 

L,TahE = ahBLOT for each h E G. 
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Then TL,TahE = TahEL,T = ahFTL,T, and hence, TL,T = XT for 
some A, so that finally L, = AT-‘. We obtain 

C@(T) = trace(LT) = trace&T) = An 

and Xa( T-l) = ar(L,) < a(L) = 1; therefore, CY”( T) CX( T-l) < n. But 
clearly C+‘(T) CX( T-l) > trace( TT-I) = n. 

COROLLARY 5.3. For each injection map I: lpn + I,“, a*(I) a(I--‘) = n. 

Proof. Since the group of isometries formed by the permutations 
and changes of signs on the coordinates of the vectors in lPn and lqn, 
respectively, satisfy the above conditions when T = I. 

Remark. The above corollary simplifies the calculation in [32, 
Sections 7 and 81 regarding the norms 01 = rrP and cl* = vP’ . 

LEMMA 5.4. Let E, F be Jinite dimensional and K1, K, be as in 
Corollary 2.17. Let G be a compact topological group and T E 9(E, F) 
be invariant under the (G, E), (G, F)- re p resentations. Then the measures 
p and v of Corollary 2.17 can be also taken to satisfy: p(f) = p( f 0 (agE)‘) 
for every f E C(K,), v(h) = v(h o agE) for every h E C(K,), for all 
g E G. 

Proof. For simplicity write asE = ag and agF = b, , and let p, v 
and K > 0 satisfy 

IW, 4 < WI f% IYP 41 fi PF’ 

for every x E E and z E F’, where fz E C(KJ and f, E C(K,) are the 
functions naturally defined by x and x. Then for each g E G 

I<Tx, z>l = I(%,x, (6;’ - I)‘+1 
f Kp(\ f, 0 ug’ (p)ljp ~(1 f, o 6;l (*‘)1/g’. 

For each t > 0 we have by Lemma 2.7 that 

K-V-1 I( TX, z)l’ < p-ltpp( 1 f, 0 ag’ 1”) + (q’)-l t-g’v( 1 f, 0 b,-l IQ’), 

where r-l = p-l + (f-l. Let dg be normalized Haar measure on G 
and define p and D by 

P(f) = JG /4f O a,‘) 4 f E CK), 

c(f) = s, 4f 0 V) & f E C(&). 

5w14/1-9 
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Clearly @ and P are normalized and invariant. Integrating the last 
inequality over G and applying Lemma 2.7 gives 

This establishes the lemma. 
For 01 an ideal norm and E a Banach space, al(E) means the a-norm 

of the identity operator on E. Of course, it may happen that a(E) = co 
for E infinite dimensional. 

THEOREM 5.5. If 1 < Q <p < 00 then j&la*) = rrp(Zzn) nq(Zsn). 

Proof. The inequality jpq(Zzn) < ~T~(Z~~) v,(Z,~) follows imme- 
diately from the typical factorization of the J,,-operators. For the 
other inequality, let p and u be normalized measures on 5’, (the 
boundary of the unit sphere of Zan) such that, for X, y E Zzs, 

I(“% r>l G j,,(4n) PW, .Y)l’g 4cr, .)la’Yg’* 

By Lemma 5.4 both ZA and v may be assumed to be invariant under 
isometries of Ian, so p = v = m, the unique normalized rotational 
invariant measure on S, . By [lo] m(l(z, *)1”)1/” = II z [I 7r8(Zzn)-l for 
all x E I,” and 1 < s < 00, so that maximizing the above inequality 
for 11 x I] = 1, jl y 11 = 1 gives 

1 < j,(Z,a) ~9(z&17r&&l. 

COROLLARY 5.6. For 1 < Q <p < 00, i,,(Z2n) rJZsfi) rg,(Z212) = n. 

Proof. By Corollary 1 of [ 1 l] n = i,,(Z,*) i&(Zzn) = iP,(Z,n) jerp(Zzn). 

COROLLARY 5.7. If 1 .=c q < p < CO and H is an infinite dimen- 
sional HiZbe.rt space, then 

i**(H) = .-&-1,2P--1,2P’~ (2g’P r (qq’. 
PQ 

Proof. The norm izz is perfect so i;:(H) = supn ipq(Zzn) = 
lim, ipp(Zz12), the last since ipcl(Z212) < i,,(Zrrfl) for each n. The limit 
may be calculated using the preceeding corollary, the expressions 
given in [IO] for nP(Zs”) and nQ(ZsA), and Stirling’s formula. 

Rema&. (1) It is clear that ipa(Zzn) < i&H) for all n, so 
i&*(H) < i&H). We do not know if it is always the case that 
i&T(H) = i&H). However, the equality is true when 1 < p = q < co, 
since then i,, = yP is perfect. 
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(2) For 1 < q <p < 00, i,,(Z,) < co; in fact the span of the 
Radamacher system in both LJO, l] and &JO, l] is isomorphic to Za . 
It is well known (cf. [22]) that y*(H) < 00 for any Hilbert space H 
and1 <p<co. 

Grothendieck observed the following result [12]. 

THEOREM 5.8. Let H1 and Ha be Hilbert spaces, and T E 2’(H,, H,). 
Then T E N,(H, , H,) if and only if T is compact and the sequence of 
ezgenvalues (&} of the H ermitian operator U = ( T*T)1/2 is absolutely 
summable. Moreover, vl( T) = vl( U) = C 1 A, I. 

For any ideal norm 01, and for any T E 2’(H,, H,) we have 
a(T) = a(( T*T)1/2), since T is obtained from (T*T)lj2 by partial 
isometry. For this reason we shall consider now only diagonal non- 
negative multiplication operators on a Hilbert space H. 

THEOREM 5.9. Let T E P’(Z,“, Z2R) be diagonal multiplication by a 
nonnegative sequence (A,),% . ThenforaZZl <q<p<oo 

j,,(T) G i: At G i,,V2TM9 

Further, 

igp(Z2n) j,,(T) < n (jsn (C Aixi2)p'2 dw~(x))~'~ (S, (1 X~X,~)*"~ dm(~))~'*', 

where dm is the normalized rotational invariant measure on the sphere 
S, , with equality when T is the identity. 

Proof. Let I be the identity on Z2”, then by Lemma 2.3 we have 

4(T) = 4W> G MWi(~) = j,,(T) 4d12nn), 

and by Theorem 5.8 

j,(T) < v,(T) = C Ai . 

Let U be diagonal multiplication by (z’2)TC1 . Then j,,(T) < 
rrP( U) 7rq*( U), since U is self-adjoint. Let 

Ct = (S, II ua IIt d+))lit, 1 < t -c ah 

and define now the probability measure TV on S, by 

CL(~) = qt Jsn.fU Ua VW II ua Ilt W4, 
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f E C(S,J. Then by [IO] 

which implies ~T#(U) < ~~rr,(1,~) ( see also [8] for this inequality). 
Combining the inequalities and Corollary 5.6 we obtain the required 
result. 

Remark. Since in [8] it was shown that .rrt(U) = c~v,(Z,~) and that 
this is equivalent to the Hilbert-Schmidt norm U(U), it follows that 
there is a constant aPp for 1 < q < p < co, such that for all n and U, 
nc,c, G apg CF 4 . 

THEOREM 5.10. Let 1 < q <p < 00 and T E P(E,F), where 
either E or F is a Hilbert space H. Then 

and 

j&(T) d ip*n*(W II T II- 

Furthermore, if E = F = H, then for compact T 

cYjb*(~~MT) 

“’ ~wz(x))~‘~ (i, (zn Aixi8)q”e dm(x))“*‘], 
. 

where (A& is the sequence of eigenvalues of (T* T)li2 counted according 
to their multiplicities. 

Proof. For the first inequality, it is sufficient by duality to suppose 
that E = H. Since il( T) is the supremum of il( T 1 G), G C H a finite 
dimensional subspace, we may suppose that E = Iam. But then by 
Lemma 2.3, iI(T) G j&&3 j,,(T) = ip&lz) j,,(T) < i&V) j,,( T). 

For 0 < E < 1, choose S E 9(F, E) with (1 - l ) j&(T) < 1 trace( TS)I 
and 1 > j,,(S). Then (1 - E) j&(T) < / trace( TS)I < iI” iI < 
II T II i$i(H) j,,(S) = i$z(H) II T II. 

Finally, if T E K(H, H) the operator T can be written in the form 
&I h,e, Q ui , where {e,>, {us} are orthonormal sequences. Let 
V = ‘&r AIJaei @ ud , and V, = Cicn We, @ ui , and let W, be 
V, regarded as an operator from [e$ to [z.Q]~ . Then for every ideal 
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norm 01, 4 v, I [eX) = 4wn), since [z.$ is the range of a norm one 
projection. Then for all 1 < t < 00, 

nt( V) = lim 7rt( V, I [ei]:) = lim nt(wJ 

= lim P~(Z,~) (S, (C Aifzi2)t’2 dm(a))lit. 

Since V*V = T, 

and the result follows by Corollaries 5.6 and 5.7. 

COROLLARY 5.11. Let 1 < 4 <p < co. Then 

Proof. Observe that i$$(ZJ = i;:(H) for any infinite dimensional 
Hilbert space H. The first inequality follows immediately from the 
second inequality of Theorem 5.10. For the other let T E J,,(E, F) 
and S E I’@, G). Factor S = BA, where 11 A II II B II < (1 + E) y2(S), 
A E 9(F, H), B E 9(H, G) and, of course, H is a Hilbert space. 
Then i,(ST) < II B II i@T) < (1 + 6) y2(S) i2Wj,,(T) by Theo- 
rem 5.10. By Proposition 2.20 T E r,*(E, F) = J,(E, F), and 

2 T) G im) j,*( T)- 

Remark. Observe that the inequalities given above are exact for 
all1 <qQ$~\<cc. 

We shall now show that y,(H) = i;;(H) can be considered as the 
relative projection constant of the space H embedded isometrically 
in the L,-spaces. 

THEOREM 5.12. Let 1 < p < CO and n be a positive integer. There 
is a measure t.~ and a subspace H CL&L) isometric to 1,” onto which there 
is a projection of norm y,(Zzn). 

Proof. Let S C lzn be the surface of the unit sphere, m rotational 
invariant measure on S and define T from lzn into L,(m) by 
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TX = 7rP(Zs”)(x, m). Clearly T is an isometric embedding. Define Q 
from L,(m) to lzn by 

Then QT is the identity on Ian so TQ is a projection onto H = T(Z,“). 
For f E L,(m) and a = (a(),~~ E 12” 

Thus, II Q II < n.,p(P)-l ,,,(Za%n)-l = yP(Zslt) by Corollary 5.6. But 

Y~YP(~P) G II T II II Q II = II 8 IL so that II Q II = Y,(P) and, thus, 
II QT II = Y#?). 

COROLLARY 5.13. Let 1 < p < 00 and H be an infinite dimensional 
Hilbert space. There is a meusure p and a subspuce of L&L) which is 
isometric to H and onto which there is a projection of norm y,(H). 

Proof. Let S C H’ be the closed unit ball, B(S) the bounded 
functions on S, (ei , e$‘) the unit vector basis of ZP and 9 the collection 
of finite dimensional subspaces of H, directed by inclusion. For each 
E E 9, choose UE E S(E, ZPm) and V, E 9(ZPm, E) to satisfy 

(a) (1 - (dim E)-l) j/ x I/ < I] UEx 11 < II x 11 for x E E; and 

(b) V,U, is the identity on E and 11 V, 11 = y,(E) < y,(H). 

Let x,’ E S, i = 1, 2 ,..., m, be a Hahn-Banach extension of UE’ei’, 
define 

A(f) = (c I mi’)ly> f 62 W) 
i<n 

and 

%(f, y’) = &(f >s BE(f, y’))* 
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Clearly A, is a semi-norm on B(S) which satisfies 

(c) (1 - (dim Q-l) 11 x 11 < AE(fz) < 11 x 11 for x E E, and BE 
is a bilinear form on B(S) x H’ satisfying 

(4 I Bdf, r’>l G Y#O 4.f) II Y’ IL f~ B(S), Y’ E H’; 2nd 
(e) BE(fz , y’) = (x, y’) for x E E, y’ E H’. 

As in Theorem 2.10 the net {@E}EE9 clusters simply to a function 
@(f, y’) = (A(f), B(f, y’). As before, setting ll3ll = A(f) defines a 
norm on 

M = {fE B(S) : A(f) < co}/{fE B(S) : A(f) = 0) 

under which the completion of M is isometric to an L&)-space. 
Defining U from H to LP(p) by UX = 3, gives an isometric embedding 
and defining V from LP(p) to H” = H so that (y’, V(f)) = B(f, y’) 
gives a linear operator of norm at most r,(H) such that VU is the 
identity on H. Thus, UV is a projection of L&L) onto U(H) of norm 
exactly yP( H). 

COROLLARY 5.14. Let 1 < p < co and v be any measure which is 
not purely atomic. Then L,(v) h as a subspace isometric to 1, (resp. ZSn) 
onto which there is a projection of norm rJ2.J (resp., yp(Zan)). 

Proof. It is known [44] that (a) For v not purely atomic, L,(v) 
has a subspace isometric to L,[O, I] onto which there is a norm one 
projection; and (b) If LP( ) u is isometric to a subspace of L,(p), there 
is a norm one projection onto the subspace. 

By Corollary 5.13 Za CL&) for some p in such a way that Z2 is 
the image of a norm r,(Za) projection. Let L CL,(p) be the sublattice 
generated by 1r . L is separable since Z, is, L is isometric to a space 
L,(o) and by (b) Z2 CL,(a) is y,(Z,)-complemented. Since L,(u) is 
separable it is isometric to a subspace of LJO, 11. By (b) I, is rJZ,)- 
complemented in LJO, 11, and part (a) completes the proof. 

It is known [46] that for any probability measure space (Q, ,E:, cl), 
E is a closed subspace of LJp)( co > p > 2) isomorphic to a Hilbert 
space if and only if there is a constant C, such that II f I& < C, II f II2 
for every f E E. An exact lower bound for CE in the isometric case is 
given by the following theorem. 

THEOREM 5.15. (1) Let 2 <p < co, then 

yg yg llf ll,/llfllz = 4aw 
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where the minimum is taken over all subspaces H C Lp(p) isometric to 
lzn and probability measures p. 

(2) Let 1 < p < 2, then 

y,g “g$ Ilfll,/llfll, = ~,(~2”>/n1’2, 

where the minimum ranges over all subspaces H CL&) isometric to lSw 
complemented with yp(lSn) norm (minimal) projections, and probability 
measures p. 

Proof. (1) C onsider the following factorization of the identity 
on H CL&-4 

H i_ L,(p) A L,(p) --% Ij(H) = H, 

where I, j are the inclusion operators, P is the orthogonal norm one 
projection. Since ~~(1,~) = n1i2 

n”2/~,(Z2”) = i,&“) = i,,(H) d llj II ll(W P II < ll(W II 

= yeg llfll,/llfll2 * 

On the other hand, letting T: 1,” -+LJm) be as in Theorem 5.12 
the isometry TX = r,(lzn)(x, -) and H = T(l,“), then the proof is 
concluded by observing that for all x E I,” 

n1’2/77,U2”) = II TX It,/11 TX II2 . 

(2) Let H CL&) be isometric to Z2n and P: L&L) -+ H be a 
projection having norm ~~(1~“) (the existence of H admitting such 
norms is assured by Corollary 5.14 whenever p is a probability non 
purely atomic measure). Consider the factorization 

I-1 
H-L, I-L,AH 

for which 

&p(l2’9 = G,(H) < II 1-l II II P II 

= Ys(12n) TEgi Ilfll,/llfll, ; 

therefore, maqeH Ilf I12/llfllp 2 i2p(12n)/yp(12n) = ~p(12n)/n1/2. 
For the other inequality take T: l,* ---t L,(m) as before and observe 

that I[ TX 112/11 TX Ijp = ~,(12n)/n11z. 
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Remark. Taking 00 > p > 2 and letting n --t CO in (1) we obtain 
that the quantity 

$y(12) = i+i ip2(z2n) = 2’l”(r((p + 1)/2)/7?/2)1/” 

is equal to inf,,, supjoH 11 fll,/ij fliz , the infimum is on all subspaces 
H CL&) isometric to I, and probability measures p. 

For 1 < p < 2 we get that 2-1/2(7r1/2/r((p + 1)/2))‘/” is equal to 
infusH SUP~,H Ilfl12/llfll, , th e infimum is on all subspaces HCL,(p) 
yP(Z2) complemented and isometric to 1, . 
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