

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAP 321

COURSE TITLE: REAL ANALYSIS III

DATE: 06/09/2022 **TIME**: 9:00 AM - 11:00 AM

Answer question ONE and any other TWO Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Sequence
 - ii. Riemann-Integrable function
 - iii. Fourier series
- b) Show that if p^* is a refinement of p, then $L(p, f, \alpha) \le L(p^*, f, \alpha')$ and $U(p^*, f, \alpha') \le U(p, f, \alpha)$
- c) Show that $f \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition p such that $U(p, f, \alpha) L(p, f, \alpha) < \varepsilon$

QUESTION TWO (20 MARKS)

- a) State the five properties of the integral
- b) Suppose $c_n \ge 0$ for 1,2,3,... $\sum c_n$ converges, $\{s_n\}$ is a sequence of distinct points on (a,b) and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x-s_n)$. Let f be continuous on [a,b] then show $\int_a^b f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$
- c) Show that if $A = \sum_{n=1}^{\infty} a_n$ and $B = \sum_{n=1}^{\infty} b_n$ both exist and are finite, then
 - i. $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$ is monotonic, that is $\mu(E) \le \mu(F)$ whenever E and F are sets in R such that $E \subset F$
 - ii. $\sum_{n=1}^{\infty} k a_n = k \sum_{n=1}^{\infty} a_n = kA \ (k \in \mathbb{R})$

QUESTION THREE (20 MARKS)

- a) Show that if $\sum_{n=1}^{\infty} \frac{1}{n!}$ Converges
- b) State the comparison test for series of nonnegative terms
- c) Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

QUESTION FOUR (20 MARKS)

- a) Show that if $\lim_{n\to\infty} a_n \neq 0$ or if $\lim_{n\to\infty} a_n$ fails to exist, then $\sum_{n=1}^{\infty} a_n$ diverges
- b) Given the function y=f(x) obtained by introducing the continuous variable x in place of the discrete variable in the nth trm of the positive series $\sum_{n=1}^{\infty} a_n$ be a decreasing function of x for $x \ge 1$, show that the series and the integral $\int_{1}^{\infty} f(x) dx$ both converge or both diverge
- c) Show that if p is a real constant, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if p < 1

QUESTION FIVE (20 MARKS)

- a) Assume α increases monotonically and $\alpha \in R$ on [a, b], let f be a bounded real function on [a, b]. show that $f \in R(\alpha)$ if and only if $f\alpha \in R$. In that case, $\int_a^b f(\alpha) d\alpha = \int_a^b f(\alpha) d\alpha d\alpha$
- b) Suppose φ is strictly increasing continuous function that maps an interval [a, b], suppose α is monotonically increasing on [a, b] and $f \in R(\alpha)$ on [a, b]. Define β and g on [A, B] by $\beta(y) = \alpha(\varphi(y))$ and $g(y) = f(\varphi(y))$ show that $\int_A^B d\beta = \int_a^b d\alpha$