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Abstract

We investigate possible quantifications of the Dunford–Pettis property. We show, in particular, that the
Dunford–Pettis property is automatically quantitative in a sense. Further, there are two incomparable mu-
tually dual stronger versions of a quantitative Dunford–Pettis property. We prove that L1 spaces and C(K )
spaces possess both of them. We also show that several natural measures of weak non-compactness are
equal in L1 spaces.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A Banach space X is said to have the Dunford–Pettis property if for any Banach space Y every
weakly compact operator T : X → Y is completely continuous. Let us recall that T is weakly
compact if the image by T of the unit ball of X is relatively weakly compact in Y . Further, T
is completely continuous if it maps weakly convergent sequences to norm convergent ones, or,
equivalently, if it maps weakly Cauchy sequence to norm Cauchy (hence norm convergent) ones.
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There are several well-known classes of Banach spaces with the Dunford–Pettis property. For
example, any Banach space whose dual has the Schur property, the space C(K ) of continuous
functions on a compact Hausdorff space and the space L1(µ) for any non-negative σ -additive
measure have the Dunford–Pettis property. The proof of the first case is an easy consequence of
the Gantmacher and the Schauder theorem and will be commented below. The other two cases
are proved in [17, Théorème 1] and outlined also in [19, pp. 61–62].

A complementary notion is that of the reciprocal Dunford–Pettis property. A Banach space X
has the reciprocal Dunford–Pettis property if for any Banach space Y any completely continuous
operator T : X → Y is weakly compact. In general, the classes of weakly compact operators and
completely continuous operators are incomparable (the identity on ℓ2 is weakly compact but not
completely continuous, the identity on ℓ1 is completely continuous but not weakly compact). The
spaces of the form C(K ) where K is a compact Hausdorff space have both the Dunford–Pettis
property (see the previous paragraph) and the reciprocal Dunford–Pettis property (see [17, p. 153,
Théorème 4]).

In the present paper we investigate quantitative versions of the Dunford–Pettis property. It is
inspired by a number of recent results on quantitative versions of certain theorems and properties.
In particular, quantitative versions of the Krein theorem were studied in [11,14,15,6], quantitative
versions of the Eberlein–Šmulyan and the Gantmacher theorem were investigated in [2], a
quantitative version of James’ compactness theorem was proved in [5,16], a quantification of
weak sequential completeness and of the Schur property was addressed in [22,23].

The main idea behind quantitative versions is an attempt to replace the respective implication
by an inequality. So, in case of the Dunford–Pettis property we will try to replace the implication

T is weakly compact ⇒ T is completely continuous

by an inequality of the form

measure of non-complete continuity of T ≤ C · measure of weak non-compactness of T .

There is a natural measure of non-complete continuity (see below) and several non-equivalent
natural measures of weak non-compactness of an operator. It is rather interesting that for one of
these measures of weak non-compactness the Dunford–Pettis property is automatically quantita-
tive but for another one it is not the case.

Non-equivalence of several measures of weak non-compactness leads us to two ways of a
strengthening of the Dunford–Pettis property. We call the resulting main notions of our paper the
direct and dual quantitative Dunford–Pettis property. They are characterized in Theorems 5.4
and 5.5. Moreover, they are mutually incomparable as witnessed by Example 5.10. Both these
properties are shared by classical spaces with the Dunford–Pettis property, i.e., C(K ) and L1
spaces. This is proved in Theorem 5.9 where it is shown that L1 and L∞ spaces possess both the
direct and dual quantitative Dunford–Pettis property.

We also include some results on a quantitative reciprocal Dunford–Pettis property. Since we
have not investigated this property in detail, we include only those results that naturally appear
as byproducts of our investigation of the Dunford–Pettis property and related quantities. A more
detailed investigation is contained in [24].

The paper is organized as follows:
Section 2 contains definitions of basic quantities used in the paper, a survey of known and

easy relationships and inequalities among them and a comparison of the introduced notions in
complex and real Banach spaces.
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In Section 3 we collect quantitative versions of easy inclusions among four classes of
operators—compact, weakly compact, completely continuous and weakly completely contin-
uous ones.

Section 4 contains quantitative versions of two known results characterizing weakly compact
operators by means of their continuity in a certain topology.

In Section 5 we show that the Dunford–Pettis property is automatically quantitative in a sense.
We further define the above mentioned natural stronger quantitative versions of the Dunford–
Pettis property, establish their characterizations and mutual duality. We also formulate there the
main results on L1 and L∞ spaces proven in the sequel.

Section 6 is devoted to the relationship of the Schur property and quantitative Dunford–Pettis
properties.

In Section 7 we show that natural measures of weak non-compactness coincide in L1 spaces.
In particular, we compute these measures explicitly.

In Section 8 we use the results of the previous sections to prove that C(K ) spaces and, more
generally, L∞ spaces have the direct quantitative Dunford–Pettis property.

Section 9 contains a quantification of some results from the measure theory and the proof that
C(K ) spaces (and hence L∞ spaces) have the dual quantitative Dunford–Pettis property as well.

Section 10 contains an example showing that the two quantitative versions of the Dunford–
Pettis property are incomparable and that a space with the Dunford–Pettis property need not
satisfy any of the two quantitative versions.

In the last section we collect some open problems.

2. Preliminaries

In this section we collect basic notation and definitions of the necessary quantities. Banach
spaces which we consider can be either real or complex—all the results are valid in both cases.
However, some of the results which we are referring to are formulated and proved only for real
spaces. In the first subsection we will show a general method how these results can be transferred
to complex spaces.

2.1. Real and complex spaces

If X is a (real or complex) Banach space, we define the spaces X (n) for n ∈ N∪{0} as follows:

• X (0) = X ,
• X (n) = (X (n−1))∗ for n ∈ N.

Further, if X is a complex Banach space, we denote by X R the real version of X , i.e., the same
space considered over R (we just forget multiplication by imaginary numbers).

Then the spaces X (n), (X (n))R and (X R)
(n) can be related as described in the following

proposition whose straightforward proof we omit.

Proposition 2.1. Let X be a complex Banach space. For each n ∈ N ∪ {0} let ιn : X (n) →

(X (n))R be the identity mapping. Further, let us define mappings ψn : (X (n))R → (X R)
(n) by

induction as follows:
• ψ0 is the identity of X R .
• ψn( f )(x) = Re ι−1

n ( f )(ι−1
n−1(ψ

−1
n−1(x))) for f ∈ (X (n))R, x ∈ (X R)

(n−1), n ∈ N.

Then the following hold:
(i) ιn is a real-linear surjective isometry for each n ∈ N ∪ {0}.

(ii) ψn is a linear onto isometry (of real Banach spaces) for each n ∈ N ∪ {0}.
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(iii) ι−1
n (ψ−1

n ( f ))(x) = f (ψn−1(ιn−1(x)))− i f (ψn−1(ιn−1(i x))) for f ∈ (X R)
(n), x ∈ X (n−1),

n ∈ N.
(iv) For each n ∈ N ∪ {0}, the mappings ιn, ψn and ψn ◦ ιn are weak-to-weak homeomorphisms.
(v) For each n ∈ N, the mapping ψn ◦ ιn is a weak∗-to-weak∗ homeomorphism.

(vi) For each n ∈ N ∪ {0} we have ψn+2 ◦ ιn+2 ◦ κX (n) = κ(X R)
(n) ◦ ψn ◦ ιn , where κY denotes

the canonical embedding of a (real or complex) Banach space Y into Y ∗∗.

We continue by a transfer proposition for operators. If X and Y are complex Banach spaces
and T : X → Y is a bounded linear operator, we denote by TR the same operator considered as
an operator from X R to YR . So, TR = ιY,0 ◦ T ◦ ι−1

X,0 using the notation from Proposition 2.1. It
is clear that ∥TR∥ = ∥T ∥ and (ST )R = SR TR whenever S : Y → Z is a bounded linear operator
from Y to a complex Banach space Z .

Further, if T : X → Y is a bounded operator between two Banach spaces (real or complex,
both of the same nature), we define the operators T (n) for n ∈ N ∪ {0} inductively: T (0) = T and
T (n) = (T (n−1))∗ for n ∈ N.

As above, we omit the straightforward proof of the following proposition.

Proposition 2.2. Let X and Y be complex Banach spaces and T : X → Y be a bounded linear
operator. Let ιX,n, ψX,n, ιY,n and ψY,n be the mappings from Proposition 2.1 related to X and
Y , respectively. Then, for each n ∈ N ∪ {0}, we have

(TR)
(2n)

= ψY,2n ◦ (T (2n))R ◦ ψ−1
X,2n = ψY,2n ◦ ιY,2n ◦ T (2n)

◦ ι−1
X,2n ◦ ψ−1

X,2n

(TR)
(2n+1)

= ψX,2n+1 ◦ (T (2n+1))R ◦ ψ−1
Y,2n+1

= ψX,2n+1 ◦ ιX,2n+1 ◦ T (2n+1)
◦ ι−1

Y,2n+1 ◦ ψ−1
Y,2n+1.

2.2. Some topologies on a Banach space

We need to define the necessary quantities. We will deal with several types of quantities—
those measuring how far is a given sequence or a net from being Cauchy, those measuring
how far is a given operator from being continuous or sequentially continuous, measures of non-
compactness and weak non-compactness of a set and, finally, measures of non-compactness and
weak non-compactness of an operator.

We can measure non-cauchyness and non-continuity with respect to various topologies. So,
we will give the definitions in an abstract way because we will deal with several different
topologies. Therefore we fix the following notation.

Let X be a Banach space. If F ⊂ X∗ is a bounded set, let qF be the seminorm on X defined
by

qF (x) = sup{|x∗(x)| : x∗
∈ F}, x ∈ X,

with the convention that supremum of the empty set is 0.
Let F be a family of subsets of the closed unit ball BX∗ of the dual space X∗. Let τF be the

locally convex topology on X generated by the family of seminorms {qF : F ∈ F }. In other
words, τF is the topology of uniform convergence on the sets from F .

We will work with three different families F —the family F1 formed by all the subsets of
BX∗ ,F2 formed by all finite subsets of BX∗ and F3 formed by all weakly compact subsets of
BX∗ . Then τF1 is the norm topology and τF2 is the weak topology which we will denote by w.
Finally, τF3 is the restriction to X of the Mackey topology on X∗∗ associated to the dual pair
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(X∗∗, X∗). This topology is called the Right topology in [26,20]. We will denote this topology
by ρX or simply ρ when X is obvious.

If X is a dual space, say X = Y ∗, we define two more topologies by means of families in BY
(which we consider canonically embedded into BY ∗∗ = BX∗ ). Let F4 be the family of all finite
sets in BY and F5 be the family of all weakly compact sets in BY . Then τF4 is the weak∗ topology
and τF5 is the Mackey topology with respect to the dual pair (Y ∗, Y ). We write ρ∗

Y ∗ or ρ∗

for the topology τF5 .
In the sequel we mean by F any family of subsets of BX∗ .
The following important observation asserts that, for a complex Banach space X , the consid-

ered topologies coincide for X and X R as well as for X∗ and (X R)
∗. Indeed, the norms in X and

X R are the same, the weak topology of X coincides with that of X R (by Proposition 2.1(iv)).
Further, the ρ-topology of X coincides with that of X R as well. Indeed, let ψn and ιn be as in
Proposition 2.1. Since ψ1 ◦ ι1 is a weak-to-weak homeomorphisms, it preserves weakly compact
sets. So, let F ⊂ BX∗ be weakly compact. Then obviously qψ1(ι1(F))(ι0x) ≤ qF (x) for each x ∈

X (by the very definition of ψ1). Moreover, if F is absolutely convex (or at least stable by mul-
tiplying with any complex unit), then qψ1(ι1(F))(ι0x) = qF (x) for each x ∈ X .

Since ψ1 ◦ ι1 is a weak∗-to-weak∗ homeomorphism by Proposition 2.1, weak∗ topology on
X∗ coincides with the weak∗ topology on (X R)

∗. Further, similarly as for ρ we obtain that ψ1 ◦ ι1
is a ρ∗-to-ρ∗ homeomorphism as well.

2.3. Quantifying non-cauchyness of sequences and nets

Let (xν)ν∈Λ be a bounded net in X indexed by a directed set Λ. We set

caF (xν) = sup
F∈F

inf
ν0∈Λ

sup

qF (xν − xν′) : ν, ν′

∈ Λ, ν ≥ ν0, ν
′
≥ ν0


.

This quantity measures in a way how far the net (xν) is from being τF -Cauchy. In particular,
caF (xν) = 0 if and only if the net (xν) is τF -Cauchy. It is easy to check that the quantity caF (·)

remains the same if we replace F by the family of all finite unions of elements of F .
The quantity caF2 (xν)will be denoted by δ (xν). This quantity for sequences was used already

in [27,22,23]. It is easy to see that δ (xν) is the diameter of the set of all weak∗ cluster points of
the net (xν) in X∗∗ (we consider X canonically embedded into X∗∗).

The quantity caF1 (xν) will be denoted simply by ca (xν). This quantity for sequences was
used in [23]. The quantity caF3 (xν) will be denoted by caρ (xν), while the quantity caF5


x∗
ν


considered for a bounded net (x∗

ν ) in the dual space will be denoted by caρ∗


x∗
ν


.

An important variant of these quantities is the following one. Let (xk) be a bounded sequence
in X . We set

caF (xk) = inf

caF


xkn


: (xkn ) is a subsequence of (xk)


.

We will denote again the quantities caF1 (·) , caF2 (·) , caF3 (·) and caF5 (·) by ca (·) ,δ (·) ,caρ (·) and caρ∗ (·), respectively. Let us remark that the quantityδ (·) was used in [27,22].

Remark. One may wonder whether the quantities caF (·) should be defined using subsequences
or subnets. We remark that we are using subsequences in purpose. In fact, if we defined ca (·)
using subnets, we would obtain the same quantity. However, ifδ (·) was defined using subnets,
it would be always zero, as any bounded sequence (or even a net) in X has a weakly Cauchy
subnet, due to the weak∗ compactness of the bidual unit ball.
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If X is a complex Banach space, then all the quantities ca (·), δ (·) and caρ (·) are the same
in X and in X R . For ca (·) it is obvious, for δ (·) it is explained in [22, Section 5] and it follows
from Proposition 2.1 using the fact that δ (xν) is the diameter of the weak∗ cluster points of (xν)
in X∗∗. The equality for caρ (·) follows from the easy fact that in the definition of caρ (·) it is
enough to take the sup over absolutely convex sets F using the last paragraph of the previous
subsection.

Now it is obvious that also the quantities ca (·) ,δ (·) , caρ (·) are the same in X and in X R .
Analogously we obtain that the quantity caρ∗ (·) remains the same in X∗ and (X R)

∗.

2.4. Quantifying continuity and sequential continuity

Let X and Y be Banach spaces. By an operator T : X → Y we mean a bounded linear opera-
tor. This operator is, by definition, norm-to-norm continuous. It is also weak-to-weak continuous
(as y∗

◦ T is weakly continuous for each y∗
∈ Y ∗) and ρ-to-ρ continuous (by [26, Lemma 12]).

We will deal with operators which are ρ-to-norm continuous, ρ-to-norm sequentially contin-
uous and weak-to-norm sequentially continuous.

Let us remark that ρ-to-norm continuous operators are exactly weakly compact operators.
This is proved in [26, Corollary 5]. A similar result was proved already by A. Grothendieck.
Indeed, he proved in [17, Lemma 1] that T is weakly compact if and only if T ∗ is ρ∗-to-norm
continuous. Note that using the Gantmacher theorem this yields one implication of the mentioned
result of [26]. In Theorem 4.1, we will prove quantitative versions of both of these results.

Weak-to-norm sequentially continuous operators are usually called completely continuous,
ρ-to-norm sequentially continuous operators are called pseudo weakly compact in [26,20].

For an operator T : X → Y we define the following quantities:

contF (T ) = sup {ca (T xν) : (xν) is a τF -Cauchy net in BX } ,

ccF (T ) = sup {ca (T xk) : (xk) is a τF -Cauchy sequence in BX } .

Then contF (T ) measures how far the mapping T |BX is from being τF -to-norm continuous. We
will consider this quantity for F3 and F5 and denote it as contρ (T ) and contρ∗ (T ), respectively
(the quantity contρ∗ (T ) can be considered in case X is a dual space). It follows from [26, Corol-
lary 5] that T is ρ-to-norm continuous if and only if the restriction T |BX is ρ-to-norm continuous.
Thus contρ (T ) = 0 if and only if T is ρ-to-norm continuous (which takes place if and only if T
is weakly compact).

Further, as any τF -Cauchy sequence is bounded, it is clear that ccF (T ) = 0 if and only if
T is τF -to-norm sequentially continuous. The quantity ccF3 (T ) will be denoted by ccρ (T ).
By taking F = F2 we get an important quantity measuring how far the operator is from being
completely continuous; we denote it as cc (T ), i.e.,

cc (T ) = ccF2 (T ) .

Similarly as above, for an operator T on a dual space X , the quantity ccF5 (T ) will be denoted
by ccρ∗ (T ).

Let us remark that obviously we have

ccF (T ) ≤ contF (T ) (2.1)

for each operator T .
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We finish this subsection by noticing that, if X and Y are complex Banach spaces and T :

X → Y is a bounded linear operator, then

contρ (T ) = contρ (TR) , ccρ (T ) = ccρ (TR) , cc (T ) = cc (TR) .

Similarly, if S : Y ∗
→ X is a bounded linear operator, then

contρ∗ (S) = contρ∗ (SR) , ccρ∗ (S) = ccρ∗ (SR) .

This follows immediately from the final remarks of the previous subsection.

2.5. Measuring non-compactness and weak non-compactness of sets

There are several ways how to measure non-compactness and weak non-compactness of a
subset of a Banach space. Almost all of them need the following notation: if A and B are two
nonempty subsets of a Banach space X , we set

d (A, B) = inf{∥a − b∥ : a ∈ A, b ∈ B},d (A, B) = sup{d (a, B) : a ∈ A}.

Hence, d (A, B) is the ordinary distance of the sets A and B andd (A, B) is the non-symmetrized
Hausdorff distance (note that the Hausdorff distance of A and B is equal to max{d (A, B),d (B, A)}).

Let A be a bounded subset of a Banach space X . Then the Hausdorff measure of non-
compactness of A is defined by

χ(A) = inf{d (A, F) : ∅ ≠ F ⊂ X finite} = inf{d (A, K ) : ∅ ≠ K ⊂ X compact}.

The Kuratowski measure of non-compactness of A is

α(A) = inf{ε > 0 : there is a finite cover of A by sets of diameter less than ε}.

We will need one more measure of non-compactness:

β(A) = sup {ca (xk) : (xk) is a sequence in A} .

Hausdorff and Kuratowski measures of non-compactness are well known, the notation used in
the literature is not unified. It is easy to check that for any bounded set A ⊂ X we have

χ(A) ≤ β(A) ≤ α(A) ≤ 2χ(A), (2.2)

thus the three measures are equivalent. (And, of course, these measures equal zero if and only if
the respective set is relatively compact.)

An analogue of Hausdorff measure of non-compactness for measuring weak non-compactness
is the de Blasi measure of weak non-compactness

ω(A) = inf{d (A, K ) : ∅ ≠ K ⊂ X is weakly compact}.

Then ω(A) = 0 if and only if A is relatively weakly compact. Indeed, the ‘if’ part is obvious and
the ‘only if’ part follows from [7, Lemma 1].

There is another set of quantities measuring weak non-compactness. Let us name some of
them:

wkX (A) =d (Aw∗

, X),
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wckX (A) = sup{ d (clustX∗∗(xk), X) : (xk) is a sequence in A},

γ (A) = sup{ | lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)| : (x∗
m) is a sequence in BX∗ , (xn)

is a sequence in A and all the involved limits exist}.

By A
w∗

we mean the weak∗ closure of A in X∗∗ (the space X is canonically embedded in X∗∗)
and clustX∗∗(xk) is the set of all weak∗ cluster points in X∗∗ of the sequence (xk). These
quantities were used (explicitly or implicitly) for example in [2,1,5,11,14] using different types
of notation and terminology. The quantity γ corresponds to the Eberlein double limit criterion for
weak compactness. It follows from [2, theorem 2.3] that for any bounded subset A of a Banach
space X we have

wckX (A) ≤ wkX (A) ≤ γ (A) ≤ 2wckX (A) , (2.3)

wkX (A) ≤ ω(A). (2.4)

So, putting together these inequalities with measures of norm non-compactness we obtain the
following diagram:

χ(A) ≤ β(A) ≤ α(A) ≤ 2χ(A)

≤

ω(A)

≤

wckX (A) ≤ wkX (A) ≤ γ (A) ≤ 2wckX (A) .

(2.5)

Let us remark that the inequality ω(A) ≤ χ(A) is obvious and that the quantities ω(·) and
wkX (·) are not equivalent; see [4,2]. Below we show that these quantities in some spaces are
equivalent.

Their non-equivalence is illustrated also by the following theorem.

Theorem 2.3. Let X be a Banach space.

• The space X is weakly compactly generated if and only if

∀ ε > 0 ∃ (An)
∞

n=1 a cover of X ∀n ∈ N : ω(An) < ε.

• The space X is isomorphic to a subspace of a weakly compactly generated space if and only
if

∀ ε > 0 ∃ (An)
∞

n=1 a cover of X ∀n ∈ N : wkX (An) < ε.

Recall that X is weakly compactly generated if it admits a weakly compact subset whose
linear span is dense in X . The first statement is an easy consequence of the fact that X is weakly
compactly generated if and only if it admits a norm-dense weakly σ -compact subset. The second
statement is a result of [12].

We finish this subsection again by a discussion on complex and real spaces. Let X be a
complex space. Since all the measures of non-compactness χ(·), α(·) and β(·) use only the metric
structure of X , they are the same in X and in X R .

The quantity ω(·) is also the same in X and in X R as weak compact sets are the same and the
metric structure is the same. Further, quantities wk (·) and wck (·) are also the same in X and
in X R by Proposition 2.1 (cf. also [22, Section 5]). Finally, the quantity γ (·) is also the same
for X and for X R . Indeed, let A ⊂ X be bounded. Let us show first that γ (ι0(A)) ≤ γ (A).
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Let (xn) be a sequence in ι0(A) and (x∗
m) a sequence in B(X R)

∗ such that both limn limm x∗
m(xn)

and limm limn x∗
m(xn) exist. Let yn = ι−1

0 (xn) and y∗
m = ι−1

1 (ψ−1
1 (x∗

m)). By Proposition 2.1,
(y∗

m) is a sequence in BX∗ and for any m, n ∈ N we have y∗
m(yn) = x∗

m(xn)− i x∗
m(ι0(i ι

−1
0 (xn))).

Without loss of generality we can suppose that both limn limm x∗
m(ι0(i ι

−1
0 (xn))) and

limm limn x∗
m(ι0(i ι

−1
0 (xn))) exist. Then

| lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)| ≤ | lim
n

lim
m

y∗
m(yn)− lim

m
lim

n
y∗

m(yn)| ≤ γ (A).

By taking the supremum we get γ (ι0(A)) ≤ γ (A).
Conversely, suppose γ (A) > c. Fix (xn) a sequence in A and (x∗

m) a sequence in BX∗ such
that

| lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)| > c

and all the limits involved exist. Let α be a complex unit such that

| lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)| = α(lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)).

Then

lim
n

lim
m
ψ1(ι1(αx∗

m))(ι0xn)− lim
m

lim
n
ψ1(ι1(αx∗

m))(ι0xn)

= | lim
n

lim
m

x∗
m(xn)− lim

m
lim

n
x∗

m(xn)| > c,

hence γ (ι0(A)) > c, which gives γ (A) ≤ γ (ι0(A)).

2.6. Measuring non-compactness and weak non-compactness of operators

An operator T : X → Y is compact (weakly compact) if T (BX ) is a relatively compact
(relatively weakly compact, respectively) subset of Y . Therefore, if we want to measure how
far a given operator is from being compact (weakly compact), we can use one of the measures
of non-compactness (weak non-compactness) defined in the previous section. To simplify the
notation we adopt the following convention. By a quantity applied to T we mean this quantity
applied to T (BX ). So, in particular, χ(T ), ω(T ) and wkY (T ) denote χ(T (BX )), ω(T (BX )) and
wkY (T (BX )), respectively. Due to the previous subsection, these quantities are the same for T
and TR in case X and Y are complex spaces.

Another possibility is to measure the distance to compact (weakly compact) operators. The
distance of T to the space of compact operators is denoted by ∥T ∥K and is called the essential
norm of T . The distance to the space of weakly compact operators is denoted by ∥T ∥w and is
called weak essential norm.

By the Schauder theorem, T is compact if and only if T ∗ is compact. Similarly, the Gant-
macher theorem says that T is weakly compact if and only if T ∗ is weakly compact. Both theo-
rems have quantitative versions, as for any operator T we have

1
2
χ(T ) ≤ χ(T ∗) ≤ 2χ(T ), (2.6)

γ (T ) ≤ γ (T ∗) ≤ 2γ (T ). (2.7)
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The inequality (2.6) is a result of [13], the inequality (2.7) is proved in [2, Theorem 3.1]. By
combining (2.7) with (2.3) we get

1
2

wkY (T ) ≤ wkX∗


T ∗


≤ 2wkY (T ) . (2.8)

These results were originally proved for real spaces. However, they hold for complex spaces as
well, due to the fact that the quantities χ(·), γ (·) and wk (·) are the same for T ∗ and for (TR)

∗.
Indeed, using Propositions 2.1 and 2.2 we get

(TR)
∗(B(YR)

∗) = ψX,1(ιX,1(T
∗(ι−1

Y,1(ψ
−1
Y,1(B(YR)

∗))))) = ψX,1(ιX,1(T
∗(BY ∗))).

So, using again Proposition 2.1, we see that the quantities χ(·) and wk (·) (and also α(·), β(·) and
wck (·)) are the same for T ∗ and (TR)

∗. Further, the quantity γ (·) is also the same, as by the pre-
vious section γ (ιX,1(T ∗(BY ∗))) = γ (T ∗(BY ∗)) and ψX,1 is just a linear isometry of real spaces.

We have thus the following diagrams:

χ(T ) ≤ ∥T ∥K

∼ ≤

χ(T ∗) ≤ ∥T ∗
∥K

wkY (T ) ≤ ω(T ) ≤ ∥T ∥w

∼ ≤

wkX∗ (T ∗) ≤ ω(T ∗) ≤ ∥T ∗
∥w.

(2.9)

The exact meaning of the equivalence sign is given by (2.6) and (2.8). The other inequalities
are either trivial or a consequence of the Schauder and the Gantmacher theorem. In general,
there are no other inequalities (even including a multiplicative constant). For the first diagram it
follows from [3,30], for the second one from [4,31]. In particular, the quantities ω(T ) and ω(T ∗)

are in general incomparable.

3. Easy quantitative implications

Any compact operator is obviously weakly compact. Further, any compact operator is easily
seen to be completely continuous. It is also easy to see that any operator which is either weakly
compact or completely continuous maps weakly Cauchy sequences to weakly convergent se-
quences. Such operators are called weakly completely continuous. We have thus the following
implications:

T is compact ⇒ T is completely continuous
⇓ ⇓

T is weakly compact ⇒ T is weakly completely continuous.

These implications have quantitative versions. We have already defined quantities measuring
how far a given operator is from being compact, weakly compact or completely continuous. To
formulate all the inequalities, we need to define, for a given operator T : X → Y , the following
two quantities:

wcc(T ) = sup{d (clustY ∗∗(T xk), Y ) : (xk) is a weakly Cauchy sequence in BX }

= sup {wkY ({T xk : k ∈ N}) : (xk) is a weakly Cauchy sequence in BX } ,

wccω(T ) = sup{ω({T xk : k ∈ N}) : (xk) is a weakly Cauchy sequence in BX }.
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The promised quantitative versions of the above implications are contained in the following
table:

cc (T ) . χ(T ) ≤ ∥T ∥K

≤ ≤ ≤

wccω(T ) ≤ ω(T ) ≤ ∥T ∥w

≤ ≤
wcc(T ) ≤ wkY (T ) .

(3.1)

The sign . means that the inequality holds with a universal positive multiplicative constant
which in this case is 4 by (3.2).

Most of the inequalities included in the diagram are easy and are immediate consequence of
the inequalities (2.5) and (2.9). We will prove the remaining two inequalities, i.e.,

cc (T ) ≤ 4χ(T ), (3.2)

wccω(T ) ≤ cc (T ) . (3.3)

To prove the first one we need the following lemma.

Lemma 3.1. Let X be a Banach space and (xk) be a weakly Cauchy sequence in X. Let c > 0
be such that ca (xk) > c. Then there is a subsequence (xkn ) such that ca


xkn


≥

c
2 .

Proof. If (xk) is weakly Cauchy, it weak∗ converges to some x∗∗
∈ X∗∗. If ca (xk) > c, then

∀n ∈ N ∃k, l ≥ n : ∥xk − xl∥ > c.

By the triangle inequality we get that

∀n ∈ N ∃k ≥ n : ∥xk − x∗∗
∥ >

c

2
.

It follows that there is a subsequence (xkn ) such that ∥xkn − x∗∗
∥ > c

2 for each n ∈ N. We claim
that ca


xkn


≥

c
2 .

Indeed, let (yl) be any subsequence of (xkn ) and m ∈ N be arbitrary. Then

diam {yl : l ≥ m} = diam {yl : l ≥ m}
w∗

= diam ({yl : l ≥ m} ∪ {x∗∗
}) >

c

2
,

hence ca (yl) ≥
c
2 . This completes the proof. �

Now we are going to prove inequality (3.2). Due to (2.2) it is enough to prove

cc (T ) ≤ 2β(T ). (3.4)

If cc (T ) = 0, the inequality is obvious. Suppose that cc (T ) > 0 and fix any c > 0 satisfying
cc (T ) > c. Then there is a weakly Cauchy sequence (xk) in BX with ca (T xk) > c. Since (T xk)

is weakly Cauchy as well, the above lemma yields a subsequence (xkn ) with ca

T xkn


≥

c
2 .

By the definition of β we get β(T ) = β(T (BX )) ≥
c
2 . Since c < cc (T ) is arbitrary, we get

β(T ) ≥
1
2 cc (T ) which yields (3.4).

We proceed to the proof of (3.3). If wccω(T ) = 0, the inequality is obvious. Suppose now
that wccω(T ) > c > 0. Then there is a weakly Cauchy sequence (xk) in BX with ω({T xk : k ∈

N}) > c. Since, for each n ∈ N, we have ω({T xk : k ≥ n}) > c and the singleton {T xn} is
weakly compact, diam {T xk : k ≥ n} > c. Thus ca (T xk) ≥ c. Since c < wccω(T ) is arbitrary,
we get cc (T ) ≥ wccω(T ), and so the proof of (3.3) is complete.
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4. Weak compactness of operators and continuity

The first of our main results are quantitative versions of [26, Corollary 5] and [17, Lemma 1].
This section is devoted to their proofs.

Theorem 4.1. Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
Then

1
2

contρ (T ) ≤ ω(T ∗) ≤ contρ (T ) , (4.1)

1
2

contρ∗


T ∗


≤ ω(T ) ≤ contρ∗


T ∗

. (4.2)

The first assertion (4.1) is the promised quantitative version of [26, Corollary 5]. We stress
that the ρ-to-norm continuity of T is quantitatively equivalent to the weak compactness of T ∗,
not to that of T . (Recall that ω(T ∗) is not equivalent to ω(T ).) The second chain of inequalities
(4.2) is a quantitative variant of A. Grothendieck’s result stating that an operator T is weakly
compact if and only if T ∗ is ρ∗-to-norm continuous (see [17, Lemma 1]).

Proof of Theorem 4.1. Let X and Y be Banach spaces and T : X → Y be a bounded linear
operator. We start the proof with the inequality

1
2

contρ∗


T ∗


≤ ω(T ). (4.3)

Let c > ω(T ) and (y∗
ν )ν∈Λ be an arbitrary ρ∗-Cauchy net in BY ∗ . We will show that ca


T ∗y∗

ν


≤

2c.
By the definition, there exists a nonempty weakly compact set L ⊂ Y such that

T (BX ) ⊂ L + cBY .

Since L is weakly compact, the net (y∗
ν ) is uniformly Cauchy on L (note that L is bounded, hence

a positive multiple of L is contained in BY ).
Let ε > 0 be arbitrary. There exists ν0 ∈ Λ such that

sup
y∈L

|y∗
ν (y)− y∗

ν′(y)| < ε, ν, ν′
≥ ν0. (4.4)

Given x ∈ BX , let y ∈ L satisfy ∥T x − y∥ ≤ c. By (4.4),

|(y∗
ν − y∗

ν′)(y)| < ε, ν, ν′
≥ ν0.

Thus we have for ν, ν′
≥ ν0

|(T ∗y∗
ν − T ∗y∗

ν′)(x)| = |(y∗
ν − y∗

ν′)(T x)|

≤ |(y∗
ν − y∗

ν′)(T x − y)| + |(y∗
ν − y∗

ν′)(y)|

≤ 2c + ε.

Thus we get for ν, ν′
≥ ν0

∥T ∗y∗
ν − T ∗y∗

ν′∥ = sup
x∈BX

|(T ∗y∗
ν − T ∗y∗

ν′)(x)| ≤ 2c + ε.

It follows that ca

T ∗y∗

ν


≤ 2c + ε. Since ε > 0 is arbitrary, we get ca


T ∗y∗

ν


≤ 2c. Hence

contρ∗ (T ∗) ≤ 2c, which yields (4.3).
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Next we observe that

contρ (T ) ≤ contρ∗


T ∗∗


, (4.5)

since any ρ-Cauchy net (xν) in BX is ρ∗-Cauchy in BX∗∗ . Using (4.5) and (4.3) for T ∗ we get

1
2

contρ (T ) ≤
1
2

contρ∗


T ∗∗


≤ ω(T ∗),

which proves the first half of (4.1).
It remains to verify the second inequalities in (4.1) and (4.2). In order to prove

ω(T ∗) ≤ contρ (T ) , (4.6)

let us fix an arbitrary c > contρ (T ). We claim that:
There exists a ρ-neighborhood U of 0 such that ∥T x∥ ≤ c for every x ∈ U ∩ BX .
Assuming the contrary, we can find for every ρ-neighborhood U of 0 an element xU ∈ U ∩BX

such that ∥T xU ∥ > c. Let U denote the family of all ρ-neighborhoods of 0. We consider U
endowed with the partial order given by inverse inclusion, and thus (xU )U∈U is a net converging
to 0 in the topology ρ. We further consider a directed set U × {0, 1} with the lexicographical
ordering and set

xU,i =


xU , i = 0,
0, i = 1,

U ∈ U .

Then (xU,i ) is again a net in BX converging to 0 in the topology ρ, and thus ca

T xU,i


≤

contρ (T ) < c. On the other hand,

∥T xU,1 − T xU,0∥ = ∥T xU ∥ > c

for any U ∈ U , which is a contradiction completing the proof of the claim.
Let U be the ρ-neighborhood of 0 from the claim. By the definition of ρ, there exist d > 0

and weakly compact sets K1, . . . , Kn in BX∗ such that

U ⊃


x ∈ X : sup

x∗∈Ki

|x∗(x)| < d, i = 1, . . . , n

.

By the Krein theorem, the closed absolutely convex hull K of K1 ∪· · ·∪ Kn is a weakly compact
subset of BX , and thus we may assume that

U =


x ∈ X : sup

x∗∈K
|x∗(x)| < d


.

To find a weakly compact set needed by the definition of ω(T ∗), we use the following
assertion:

There exists n ∈ N such that T ∗(BY ∗) ⊂ nK + cBX∗ .
To verify this, assume that this is not the case. Then for every n ∈ N there exists y∗

n ∈ BY ∗

with

T ∗y∗
n ∉ nK + cBX∗ .

The set nK is weakly compact, hence also weak∗ compact. It follows that nK + cBX∗ is a weak∗

compact absolutely convex set, and thus we may separate the point T ∗y∗
n from it by an element

xn ∈ X of norm one such that

sup
x∗∈nK ,z∗∈BX∗

Re (x∗(xn)+ cz∗(xn)) < Re (T ∗y∗
n )(xn).
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Since K is absolutely convex, we get

sup
x∗∈nK

|x∗(xn)| + c < Re (T ∗y∗
n )(xn).

Let n ∈ N be such that ∥T ∗
∥

n < d . Then

|(nx∗)(xn)| < |nx∗(xn)| + c < Re (T ∗y∗
n )(xn) ≤ ∥T ∗

∥, x∗
∈ K ,

and thus

|x∗(xn)| < d, x∗
∈ K .

Hence xn ∈ U ∩ BX , which implies ∥T xn∥ ≤ c by the choice of U . Thus

c ≥ ∥T xn∥ ≥ Re y∗
n (T xn) = Re (T ∗y∗

n )(xn)

> sup
x∗∈nK

|x∗(xn)| + c

≥ c.

The contradiction proves the assertion, and so we have ω(T ∗) ≤ c. This finishes the proof of
(4.6), and thus also of (4.1).

Since the proof of the remaining inequality

ω(T ) ≤ contρ∗


T ∗


(4.7)

is rather analogous to the one of (4.6), we merely outline it. Given c > contρ∗ (T ∗), we find a
ρ∗-neighborhood V of 0 in Y ∗ such that ∥T ∗y∗

∥ ≤ c for every y∗
∈ V ∩ BY ∗ . Then we may

assume without loss of generality that there are an absolutely convex weakly compact set L ⊂ BY
and d > 0 such that V = {y∗

∈ Y ∗
: supy∈L |y∗(y)| < d}. Finally, we find n ∈ N such that

T (BX ) ⊂ nL + cBY . (We proceed as above, assuming the contrary, for each n ∈ N there exist
xn ∈ BX and y∗

n ∈ BY ∗ satisfying

sup
y∈nL

|y∗
n (y)| + c < Re y∗

n (T xn).

For n ∈ N with ∥T ∥

n < d , we then get y∗
n ∈ V , and thus

c ≥ ∥T ∗y∗
n∥ ≥ Re y∗

n (T xn) > c,

which is a contradiction.) �

5. Two ways of quantifying the Dunford–Pettis property

We recall that a Banach space X is said to have the Dunford–Pettis property if for any Banach
space Y every weakly compact operator T : X → Y is completely continuous. The following
theorem summarizes the well-known equivalent formulations of this property.

Theorem 5.1. For a Banach space X, the following assertions are equivalent:

(i) X has the Dunford–Pettis property,
(ii) every weakly compact operator T : X → c0 is completely continuous,

(iii) given a weakly null sequence (xn) in X and a weakly null sequence (x∗
n ) in X∗, we have

limn x∗
n (xn) = 0,

(iv) weakly convergent sequences in X coincide with ρ-convergent ones,
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(v) every weakly convergent sequence in X∗ is ρ∗-convergent,
(vi) if T : Y → X is weakly compact, with Y an arbitrary Banach space, then T ∗ is completely

continuous,
(vii) if T : ℓ1 → X is weakly compact, then T ∗ is completely continuous.

Proof. The proofs of many of the equivalences involved in Theorem 5.1 are almost identical and
use the same techniques for which we refer to [8] or [20]. The equivalence of (i), (ii), (iii) and (vi)
is mentioned in [8, Theorem 1], the equivalence of (i), (iv) and (v) has been basically proved in the
context of locally convex spaces by A. Grothendieck in [17, Proposition 1 bis]. Note that for the
implication (v) ⇒ (vi) one needs only the aforementioned result that for any weakly compact op-
erator T , the adjoint T ∗ is ρ∗-to-norm continuous. The implication (vi) ⇒ (vii) is trivial and for
(vii) ⇒ (iii) it is enough to consider the operator T : ℓ1 → X with T (an) =


an xn, (an) ∈ ℓ1,

where (xn) is a given weakly null sequence in X . �

Using the results of Section 4 we obtain that the Dunford–Pettis property is always quantita-
tive in some sense.

Theorem 5.2. For a Banach space X, the following assertions are equivalent:

(i) X has the Dunford–Pettis property,
(ii) cc (T ) ≤ 2ω(T ∗) for every operator T from X to any Banach space Y ,

(iii) cc (T ∗) ≤ 2ω(T ) for every operator T from any Banach space Y to X,
(iv) lim sup |x∗

n (xn)| ≤ ω({x∗
n : n ∈ N}) whenever (xn) is a weakly null sequence in BX and

(x∗
n ) is a bounded sequence in X∗,

(v) lim sup |x∗
n (xn)| ≤ ω({xn : n ∈ N}) whenever (xn) is a bounded sequence in X and (x∗

n ) is
a weakly null sequence in BX∗ ,

(vi) caρ∗


x∗

n


≤ 2ω({x∗

n : n ∈ N}) whenever (x∗
n ) is a bounded sequence in X∗,

(vii) caρ (xn) ≤ 2ω({xn : n ∈ N}) whenever (xn) is a bounded sequence in X.

Proof. Obviously, by Theorem 5.1, any of the assertions (ii)–(v) implies assertion (i). For (vi)
and (vii) this follows from the completeness of the Mackey topologies ρ∗

= τ(X∗, X) and
τ(X∗∗, X∗), respectively (see [29, Proposition 1.1]). Indeed, suppose for example (vii). Let (xn)

be a weakly null sequence. Then any subsequence (xkn ) is also weakly null and hence (by (vii))caρ

xkn


= 0. It follows that any subsequence of (xn) has a further subsequence which is

ρ-Cauchy. Indeed, let (un) be any subsequence of (xn). Set u0
n = un and construct by induction

(uk
n) a subsequence of (uk−1

n ) with caρ

uk

n


< 1

k . The diagonal sequence (uk
k) is then ρ-Cauchy.

By the aforementioned completeness it follows that any weakly null ρ-Cauchy sequence is
ρ-null. Thus any subsequence of (xn) has a further subsequence which is ρ-null. Therefore (xn)

itself is ρ-null. We have proved that X satisfies the condition (iv) of Theorem 5.1, hence X has
the Dunford–Pettis property. The reasoning for (vi) ⇒ (i) is similar. Thus it is sufficient to show
that the Dunford–Pettis property implies all the other assertions.

(i) ⇒ (ii) Suppose X has the Dunford–Pettis property, Y is any Banach space and T : X → Y
is a bounded linear operator. By Theorem 5.1(iv), weakly Cauchy and ρ-Cauchy sequences in X
coincide, thus in particular cc (T ) = ccρ (T ). Since obviously ccρ (T ) ≤ contρ (T ) (cf. (2.1)),
Theorem 4.1 gives (ii).

(i) ⇒ (iii) Similarly, suppose X has the Dunford–Pettis property, Y is any Banach space and
T : Y → X is a bounded linear operator. By Theorem 5.1(v), weakly Cauchy sequences in X∗

are ρ∗-Cauchy, thus in particular cc (T ∗) ≤ ccρ∗ (T ∗). Since obviously ccρ∗ (T ) ≤ contρ∗ (T ∗),
Theorem 4.1 yields (iii).
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(i) ⇒ (v) Let (xn) be a bounded sequence in X and (x∗
n ) be a weakly null sequence in BX∗ .

Let c > ω({xn : n ∈ N}) be arbitrary. Fix a weakly compact set K ⊂ X such that d ({xn :

n ∈ N}, K ) < c. For each n ∈ N, let yn ∈ K be such that ∥yn − xn∥ < c. Since (x∗
n ) is weakly

null, it is also ρ∗-null (by Theorem 5.1), so in particular x∗
n → 0 uniformly on K . It follows that

x∗
n (yn) → 0. Hence

lim sup |x∗
n (xn)| ≤ lim sup |x∗

n (xn − yn)| + lim sup |x∗
n (yn)| ≤ lim sup ∥xn − yn∥ ≤ c.

This completes the proof.
(i) ⇒ (iv) This implication can be proved exactly as the previous one, we only need to inter-

change roles of X and X∗.
(i) ⇒ (vii) Let c > ω({xn : n ∈ N}) be arbitrary. Fix a weakly compact set K ⊂ X such

thatd ({xn : n ∈ N}, K ) < c. For each n ∈ N, let yn ∈ K be such that ∥yn − xn∥ < c. Since
K is weakly compact, there is a subsequence (ynk ) weakly converging to some y ∈ K . Then
(ynk ) is also ρ-convergent (by Theorem 5.1). To complete the proof it is enough to show that
caρ


xnk


≤ 2c. Fix any weakly compact L ⊂ BX∗ . Then for any k, l ∈ N we have

qL(xnk − xnl ) ≤ qL(xnk − ynk )+ qL(ynk − ynl )+ qL(ynl − xnl ) < 2c + qL(ynk − ynl ).

It follows that

caρ

xnk


≤ 2c + caρ


ynk


= 2c

and the proof is completed.
(i) ⇒ (vi) This implication can be proved analogously to the previous one by interchanging

roles of X and X∗. �

Remark 5.3. Quantities caρ∗ (·) and caρ (·) in the assertions (vi) and (vii), respectively, of
Theorem 5.2 cannot be replaced by caρ∗ (·) and caρ (·). Indeed, let X be an arbitrary Banach
space possessing the Dunford–Pettis property. Consider a sequence (xn) of the form x, 0, x, 0, . . .
in X∗ (in X ) with x ≠ 0. Then ω({xn : n ∈ N}) = 0, but caρ∗ (xn) = ∥x∥ (caρ (xn) = ∥x∥,
respectively).

It is natural to ask whether a variant of Theorem 5.2 can be proved with quantities ω(·)
replaced by the respective quantities wk (·). Interestingly enough, the study of this question
brings us to deeper understanding of the Dunford–Pettis property. It turns out that the analogues
of conditions (ii), (iv) and (vi) with ω(·) replaced by wk (·) are all equivalent to each other and
so are the analogues of conditions (iii), (v) and (vii). Both groups of these quantitative assertions
obviously strengthen the Dunford–Pettis property, however, as Example 10.1 will show, they are
incomparable in general. This reveals the dual nature of the Dunford–Pettis property which is
not apparent in the classical non-quantitative case.

Theorem 5.4. Let X be a Banach space. The following assertions are equivalent:

(i) There is C > 0 such that cc (T ) ≤ CwkX∗ (T ∗) for any operator T from X to a Banach
space Y .

(ii) There is C > 0 such that cc (T ) ≤ CwkX∗ (T ∗) for any operator T from X to ℓ∞.
(iii) There is C > 0 such that lim sup |x∗

n (xn)| ≤ CwkX∗


{x∗

n : n ∈ N}


whenever (xn) is a
weakly null sequence in BX and (x∗

n ) is a bounded sequence in X∗.
(iv) There is C > 0 such that caρ∗


x∗

n


≤ Cδ


x∗

n


for any bounded sequence (x∗

n ) in X∗.
(v) There is C > 0 such that caρ∗


x∗

n


≤ CwkX∗


{x∗

n : n ∈ N}


for any bounded sequence
(x∗

n ) in X∗.
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(vi) There is C > 0 such that cc (T ) ≤ CwkY (T ) for any operator T from X to a Banach
space Y .

(vii) There is C > 0 such that cc (T ) ≤ Cwkℓ∞ (T ) for any operator T from X to ℓ∞.

Proof. The implication (i) ⇒ (ii) holds trivially, even with the same constant.
(ii) ⇒ (iii) Let us assume that there is C > 0 such that cc (T ) ≤ CwkX∗ (T ∗) for any operator

T from X to ℓ∞. Let (xn) be a weakly null sequence in BX and (x∗
n ) be a bounded sequence in

X∗. We will show that

lim sup |x∗
n (xn)| ≤ 8CwkX∗


{x∗

n : n ∈ N}

.

Let us define operator S : ℓ1 → X∗ by S(λn) =


n λn x∗
n . Since Sen = x∗

n for every n ∈ N,
where en denotes the n-th basic vector in ℓ1, the set S(Bℓ1) is contained in the closed absolutely
convex hull of {x∗

n : n ∈ N}, and so, by [11, Theorem 2],

wkX∗ (S) ≤ 2wkX∗


{x∗

n : n ∈ N}

. (5.1)

In fact, the result of [11] is formulated for the closed convex hull, but the result on the closed
absolutely convex hull is an easy consequence (both in the real and the complex cases).

Let T be the restriction of S∗ to the space X . Then T is an operator from X to ℓ∞. Using the
fact that (x1, 0, x2, 0, . . .) is a weakly Cauchy sequence in BX , the assumption (ii) and estimates
(2.8) and (5.1), we can write

lim sup |x∗
n (xn)| = lim sup |en(T xn)| ≤ lim sup ∥T xn∥

≤ cc (T ) ≤ CwkX∗


T ∗


≤ 2Cwkℓ∞ (T ) ≤ 2Cwkℓ∞

S∗


≤ 4CwkX∗ (S) ≤ 8CwkX∗


{x∗

n : n ∈ N}

.

(iii) ⇒ (iv) Let us assume that (iii) holds with a constant C > 0. We will show that (iv) holds
with the constant 2C +1. Let (x∗

n ) be a bounded sequence in X∗. If caρ∗


x∗

n


= 0, the inequality

is obvious. So, suppose caρ∗


x∗

n


> 0 and fix any t ∈ (0, caρ∗


x∗

n


). Then there is a sequence

of natural numbers ln < mn < ln+1, n ∈ N, and a weakly compact set K ⊂ BX such that
qK (x∗

ln
− x∗

mn
) > t for every n ∈ N. Let (xn) be a sequence in K such that |(x∗

ln
− x∗

mn
)(xn)| > t

for every n ∈ N. By passing to a subsequence if necessary, we may assume that (xn) is weakly
convergent to some x ∈ K . Then the sequence (yn) = ( xn−x

2 ) is a weakly null sequence in BX .
Any weak∗ cluster point of the sequence (x∗

ln
− x∗

mn
) in X∗∗∗ is the difference of two weak∗

cluster points of (x∗
n ) in X∗∗∗, in particular

wkX∗


x∗

ln − x∗
mn


≤ δ


x∗

n


. (5.2)

Using consecutively the fact that xn = 2yn + x , the validity of (iii) with C and (5.2), we get

t ≤ lim inf |(x∗

ln − x∗
mn
)(xn)|

≤ 2 lim sup |(x∗

ln − x∗
mn
)(yn)| + lim sup |(x∗

ln − x∗
mn
)(x)|

≤ 2CwkX∗


{x∗

ln − x∗
mn

: n ∈ N}

+ wkX∗


{x∗

ln − x∗
mn

: n ∈ N}


≤ (2C + 1)δ

x∗

n


and the proof is completed.

(iv) ⇒ (v) Let us assume that there is C > 0 such that caρ∗


x∗

n


≤ Cδ


x∗

n


for any bounded

sequence (x∗
n ) in X . Since, by [22, Theorem 1],δ x∗

n


≤ 2d (clustX∗∗∗(x∗

n ), X∗),
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using the assumption we get

caρ∗


x∗

n


≤ Cδ x∗

n


≤ 2Cd (clustX∗∗∗(x∗

n ), X∗) = 2CwkX∗


{x∗

n : n ∈ N}


for any bounded sequence (x∗
n ) in X∗.

(v) ⇒ (i) Suppose that (v) holds with a constant C > 0. We will show that (i) holds with
2C . Let T be an operator from X to a Banach space Y . Fix arbitrary numbers u < cc (T ) and
v > wkX∗ (T ∗). It suffices to show that u ≤ 2Cv.

Since cc (T ) > u, there is a weakly Cauchy sequence (xn) in BX with ca (T xn) > u. Let
ln < mn < ln+1, n ∈ N, be a sequence of natural numbers and (y∗

n ) be a sequence in BY ∗ such
that |y∗

n (T xln − T xmn )| > u for every n ∈ N. Further, using the inequality wkX∗ (T ∗) < v we
get wkX∗


{T ∗y∗

n : n ∈ N}

< v. It follows then from the assumption (v) that caρ∗


T ∗y∗

n


< Cv.

By passing to a subsequence, if necessary, we may assume that caρ∗


T ∗y∗

n


< Cv. The set K =

{
xln −xmn

2 : n ∈ N} is relatively weakly compact in BX and hence there is N ∈ N such that
qK (T ∗y∗

i − T ∗y∗

j ) < Cv for every i, j ≥ N . It follows that for j ≥ N we have

u < |y∗

j (T xl j − T xm j )| = |T ∗y∗

j (xl j − xm j )|

≤ 2|(T ∗y∗

j − T ∗y∗

N )(2
−1(xl j − xm j ))| + |T ∗y∗

N (xl j − xm j )|

≤ 2qK (T
∗y∗

j − T ∗y∗

N )+ |T ∗y∗

N (xl j − xm j )|

< 2Cv + |T ∗y∗

N (xl j − xm j )|,

hence

u ≤ 2Cv + lim sup
j→∞

|T ∗y∗

N (xl j − xm j )| = 2Cv,

as the sequence (xl j − xm j ) is weakly null.
Finally, the equivalences (i) ⇔ (vi) and (ii) ⇔ (vii) follow from (2.8). �

We have included to the previous theorem also conditions (vi) and (vii) as they quantify the
classical definition of the Dunford–Pettis property. However, in view of conditions (i) and (ii)
and Theorem 5.2, it is more natural to define the Dunford–Pettis property using the implication

T ∗ is weakly compact ⇒ T is completely continuous,

as this is the formulation which can be canonically quantified.

Theorem 5.5. Let X be a Banach space. The following assertions are equivalent:

(i) There is C > 0 such that cc (T ∗) ≤ CwkX (T ) for any operator T from a Banach space Y
to X.

(ii) There is C > 0 such that cc (T ∗) ≤ CwkX (T ) for any operator T from ℓ1 to X.
(iii) There is C > 0 such that lim sup |x∗

n (xn)| ≤ CwkX ({xn : n ∈ N}) whenever (xn) is a
bounded sequence in X and (x∗

n ) is a weakly null sequence in BX∗ .
(iv) There is C > 0 such that caρ (xn) ≤ Cδ (xn) for any bounded sequence (xn) in X.
(v) There is C > 0 such that caρ (xn) ≤ CwkX ({xn : n ∈ N}) for any bounded sequence (xn)

in X.

The proof is very similar to the proof of Theorem 5.4. Anyway, for the sake of clarity we
indicate its proof.



506 M. Kačena et al. / Advances in Mathematics 234 (2013) 488–527

Proof. The implication (i) ⇒ (ii) holds trivially, even with the same constant.
(ii) ⇒ (iii) Let us assume that there is C > 0 such that cc (T ∗) ≤ CwkX (T ) for any operator

T from ℓ1 to X . Let (xn) be a bounded sequence in X and (x∗
n ) be a weakly null sequence in

BX∗ . We will show that

lim sup |x∗
n (xn)| ≤ 2CwkX ({xn : n ∈ N}) .

Let us define operator T : ℓ1 → X by T (λn) =


n λn xn . Since T en = xn for every n ∈ N,
where en denotes the n-th basic vector in ℓ1, and since (x∗

1 , 0, x∗

2 , 0, . . .) is a weakly Cauchy
sequence in BX∗ , we can write

lim sup |x∗
n (xn)| = lim sup |(T ∗x∗

n )(en)| ≤ lim sup ∥T ∗x∗
n∥ ≤ cc


T ∗


≤ CwkX (T ) .

By [11, Theorem 2],

wkX (T ) ≤ 2wkX ({xn : n ∈ N}) ,

and the conclusion follows.
The implications (iii) ⇒ (iv) and (iv) ⇒ (v) can be proved by copying the proofs of respective

implications of Theorem 5.4, interchanging the role of X and X∗ and replacing ρ∗ by ρ.
(v) ⇒ (i) Suppose that (v) holds with a constant C > 0. We will show that (i) holds with

2C . Let T be an operator from a Banach space Y to X . Fix arbitrary numbers u < cc (T ∗) and
v > wkX (T ). It suffices to show that u ≤ 2Cv.

Since cc (T ∗) > u, there is a weakly Cauchy sequence (x∗
n ) in BX∗ such that ca


T ∗x∗

n


> u.

Let ln < mn < ln+1, n ∈ N, be a sequence of natural numbers and (yn) be a sequence in BY such
that |(T ∗x∗

ln
− T ∗x∗

mn
)(yn)| > u for every n ∈ N. Further, using the inequality wkX (T ) < v

we get wkX ({T yn : n ∈ N}) < v. It follows then from the assumption (v) that caρ (T yn) < Cv.
By passing to a subsequence, if necessary, we may assume that caρ (T yn) < Cv. The set K =

{
x∗

ln
−x∗

mn
2 : n ∈ N} is relatively weakly compact in BX∗ , and hence there is N ∈ N such that qK

(T yi − T y j ) < Cv for every i, j ≥ N . It follows that for j ≥ N we have

u < |(T ∗x∗

l j
− T ∗x∗

m j
)(y j )| = |(x∗

l j
− x∗

m j
)(T y j )|

≤ 2|(2−1(x∗

l j
− x∗

m j
))(T y j − T yN )| + |(x∗

l j
− x∗

m j
)(T yN )|

≤ 2qK (T y j − T yN )+ |(x∗

l j
− x∗

m j
)(T yN )|

< 2Cv + |(x∗

l j
− x∗

m j
)(T yN )|,

hence

u ≤ 2Cv + lim sup
j→∞

|(x∗

l j
− x∗

m j
)(T yN )| = 2Cv,

as the sequence (x∗

l j
− x∗

m j
) is weakly null. �

Definition 5.6. We say that a Banach space X has the direct quantitative Dunford–Pettis property
if X satisfies the equivalent conditions of Theorem 5.4. In case X satisfies the equivalent
conditions of Theorem 5.5 we say that X has the dual quantitative Dunford–Pettis property.

It is clear that while Theorem 5.4 aims to quantify the classical formulation “every weakly
compact operator from X into a Banach space Y is completely continuous”, whereas Theorem 5.5
is a quantification of the topological characterization of the Dunford–Pettis property “every
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weakly convergent sequence in X is ρ-convergent”. Example 10.1 shows that these two
quantifications define different classes of Banach spaces in general.

However, the two quantifications are still connected in a way. From the characterization (iii)
of the Dunford–Pettis property in Theorem 5.1 it is obvious that if the dual space X∗ of a Banach
space X has the Dunford–Pettis property then the space X itself has the same property. The
following theorem describes an analogous result for quantitative versions.

Theorem 5.7. For any Banach space X, the following assertions hold:

(a) If X∗ has the dual quantitative Dunford–Pettis property then X has the direct quantitative
Dunford–Pettis property.

(b) If X∗ has the direct quantitative Dunford–Pettis property then X has the dual quantitative
Dunford–Pettis property.

Remark 5.8. The previous theorem can be stated more precisely as follows: let X be a Banach
space.

(a′) If X∗ satisfies one of the conditions (i), (iii), (iv) or (v) of Theorem 5.5 with a given constant
C , then X satisfies the respective condition of Theorem 5.4 with the same constant.

(b′) If X∗ satisfies one of the conditions (iii), (iv) or (v) of Theorem 5.4 with a given constant C ,
then X satisfies the respective condition of Theorem 5.5 with the same constant. In case of
the assertion (i), the respective condition (i) in Theorem 5.5 is satisfied with 4C .

Proof. The first assertion is almost obvious, it uses only the easy facts that cc (T ) ≤ cc (T ∗∗)

for each operator T and that caρ∗ (·) ≤ caρ (·) on a dual space. Let us show the second assertion
for the four specified cases:

(i) Let T : Y → X be a bounded operator. Using the assumption and (2.8) we get

cc

T ∗


≤ CwkX∗∗


T ∗∗


≤ 4CwkX (T ) .

(iii) Let (x∗
n ) be a weakly null sequence in BX∗ and (xn) be a bounded sequence in X . Then

the assumption gives

lim sup |x∗
n (xn)| ≤ CwkX∗∗ ({xn : n ∈ N}) ≤ CwkX ({xn : n ∈ N}) ,

because the inclusion X ⊂ X∗∗ yields the second inequality.
(iv) Let (xn) be any bounded sequence in X . Then caρ (xn) = caρ∗ (xn), where the topology

ρ∗ on the right-hand side is considered on X∗∗. By the assumption we have caρ∗ (xn) ≤ Cδ (xn).
The quantity δ (xn) does not depend on whether we consider the sequence in X or in X∗∗. It
follows that caρ (xn) ≤ Cδ (xn).

(v) Let (xn) be any bounded sequence in X . Then caρ (xn) = caρ∗ (xn) (similarly as in the
previous case). By the assumption we havecaρ∗ (xn) ≤ CwkX∗∗ ({xn : n ∈ N}) .

We conclude by noticing that wkX∗∗ ({xn : n ∈ N}) ≤ wkX ({xn : n ∈ N}) as in (iii). �

Now we are going to mention which classes of Banach spaces do have quantitative
Dunford–Pettis property. To this end let us recall the classical terminology concerning L p spaces.
If X and Y are isomorphic Banach spaces, by d (X, Y ) we denote their Banach–Mazur distance,
i.e.,

d (X, Y ) = inf{∥T ∥ ∥T −1
∥ : T is an invertible operator from X onto Y }.
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Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞. A Banach space X is said to be an L p,λ space if for every
finite-dimensional subspace B of X there is a finite-dimensional subspace C of X such that
C ⊃ B and d (C, ℓn

p) ≤ λ where n = dim C .
A Banach space is said to be an L p space, 1 ≤ p ≤ ∞, if it is an L p,λ space for some λ < ∞.
One of our main objectives in the rest of this paper will be the proof of the following theorem.

Theorem 5.9. Every L1 space and every L∞ space has both the direct and the dual quantitative
Dunford–Pettis properties.

The case of L∞ spaces follows from Theorems 8.4 and 9.6. The case of L1 spaces then follows
from Theorem 5.7 because the dual of an L1 space is an L∞ space by [19, p. 58].

The following example shows that the Dunford–Pettis property is not automatically
quantitative in either sense.

Example 5.10. There is a Banach space X with X∗ separable such that

• X has the dual quantitative Dunford–Pettis property, but not the direct quantitative Dunford–
Pettis property.

• X∗ has the direct quantitative Dunford–Pettis property, but not the dual quantitative Dunford–
Pettis property.

• X ⊕ X∗ has the Dunford–Pettis property but not any of its two quantitative versions.

The example is constructed in Section 10 where several more properties of this space are
stated and proved.

6. The Schur property and quantitative Dunford–Pettis properties

Let us recall that a Banach space has the Schur property if any weakly convergent sequence
is norm convergent. It is obvious that any Banach space X with the Schur property enjoys the
Dunford–Pettis property as any operator defined on X is completely continuous. A well-known
consequence of this observations says that a Banach space, whose dual has the Schur property,
has the Dunford–Pettis property. Moreover, such spaces enjoy also the reciprocal Dunford–Pettis
property. We will show that these results can be refined in a quantitative way. Let us start with
the following easy consequence of Rosenthal’s ℓ1-theorem.

Lemma 6.1. Let X be a Banach space not containing an isomorphic copy of ℓ1. Let Y be any
Banach space and T : X → Y be a bounded operator. Then

wkY (T ) ≤ ω(T ) ≤ χ(T ) ≤ β(T ) ≤ cc (T ) .

Proof. Only the last inequality requires a proof, the remaining ones follow from (2.5). So, let
(xk) be any sequence in BX . By Rosenthal’s ℓ1-theorem (see [28]) there is a weakly Cauchy
subsequence (xkn ). Thusca (T xk) ≤ ca


T xkn


≤ cc (T ) ,

hence β(T ) ≤ cc (T ) which we wanted to show. �

In the following proposition we explicitly formulate a trivial fact on Banach spaces with the
Schur property, so no proof is required.
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Proposition 6.2. Let X be a Banach space with the Schur property. Then any bounded linear
operator T : X → Y for any Banach space Y is completely continuous. In particular, X has the
direct quantitative Dunford–Pettis property.

Theorem 6.3. Let X be a Banach space whose dual has the Schur property.

(i) Let T : X → Y be a bounded operator. Then

wkY (T ) ≤ ω(T ) ≤ χ(T ) ≤ cc (T ) ≤ 2ω(T ∗) = 2χ(T ∗) ≤ 4χ(T ). (6.1)

(ii) The space X has the dual quantitative Dunford–Pettis property. More precisely, any bounded
sequence (xn) in X satisfies caρ (xn) = δ (xn).

Proof. (i) The first two inequalities follow from (2.5), the third one follows from Lemma 6.1
as X does not contain an isomorphic copy of ℓ1. (If X contains an isomorphic copy of ℓ1, by
[25, Proposition 3.3] the dual space X∗ contains an isomorphic copy of C({0, 1}

N)∗, hence also
an isomorphic copy if C([0, 1])∗. The space C([0, 1])∗ fails the Schur property as it contains a
copy of L1(0, 1). Thus X∗ fails the Schur property as well.)

The fourth inequality follows from Theorem 5.2 as X has the Dunford–Pettis property. (This
follows from the second assertion (ii) or by the following reasoning. If T : X → Y is weakly
compact, then T ∗

: Y ∗
→ X∗ is weakly compact as well by the Gantmacher theorem. Since X∗

has the Schur property, T ∗ is compact. By the Schauder theorem, T is compact as well, hence T
is completely continuous.)

Further, since X∗ has the Schur property, ω(T ∗) = χ(T ∗).
The last inequality follows from (2.6).
(ii) Since X∗ has the Schur property, it has the direct quantitative Dunford–Pettis property by

Proposition 6.2. Hence X has the dual version due to Theorem 5.7.
Let us show the precise version. If X∗ has the Schur property, it satisfies the condition (i) of

Theorem 5.4 with C = 0. Therefore it satisfies the conditions (ii) and (iii) of the same theorem
with C = 0 as well, so it satisfies the condition (iv) of the mentioned theorem with C = 1 (all
the implications follows from the computation of constants within the proof). By Remark 5.8
we get that X satisfies the condition (iv) of Theorem 5.5 with C = 1, i.e., caρ (xn) ≤ δ (xn)

for each bounded sequence (xn) in X . Since the converse inequality is obvious, the proof is
completed. �

Let us point out that the Schur property of the dual of a Banach space X implies by
Theorem 6.3(i) the inequality

wkY (T ) ≤ cc (T ) (6.2)

for any operator T : X → Y from X to a Banach space Y . This can be considered as a quantita-
tive strengthening of the above mentioned fact that a space, whose dual has the Schur property,
possesses the reciprocal Dunford–Pettis property.

It is worth noticing that a Banach space X whose dual has the Schur property need not have
to possess the direct quantitative Dunford–Pettis property (see Example 10.1).

7. Measuring weak non-compactness in L1 spaces

The aim of this section is to show that in the spaces of the form L1(µ) the quantities ω(·) and
wk (·) are equal. This is proved first for the case of a finite measure µ, then for spaces ℓ1(Γ ) and
finally for a general σ -additive non-negative measure µ.
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Proposition 7.1. Let Y = L1(µ), where µ is a finite non-negative σ -additive measure and X be
any Banach space containing isometrically Y as a subspace. Then

ω(A) = wkX (A) = wckX (A) = inf
c>0

sup


(| f | − c)+ dµ : f ∈ A


(7.1)

for each bounded set A ⊂ Y .

Proof. Let A ⊂ Y be a bounded set. Without loss of generality suppose A ⊂ BY . By (2.5) we
have

wckX (A) ≤ wkX (A) ≤ ω(A).

Further, since µ is finite, the set B = BL∞(µ) ⊂ Y is a weakly compact subset of X . Thus

ω(A) ≤ inf
c>0
d (A, cB).

It is easy to check that

d ( f, cB) =


(| f | − c)+ dµ

for each c > 0 and f ∈ Y . Indeed, let f ∈ Y be arbitrary. If g ∈ cB is arbitrary, then | f − g| ≥

(| f | − c)+ almost everywhere, which yields the inequality “≥”. The converse inequality follows
from the fact that the function

g(t) =

 f (t) if | f (t)| ≤ c,

c
f (t)

| f (t)|
if | f (t)| > c

belongs to cB and


| f − g| dµ =

(| f | − c)+ dµ. Therefore the last quantity of (7.1) is equal

to infc>0d (A, cB). It follows that to prove (7.1) it is enough to show that

wckX (A) ≥ inf
c>0
d (A, cB). (7.2)

Denote the right-hand side by d. If d = 0, the inequality is obvious. So suppose that d > 0
and fix any ε ∈ (0, d

5 ). To finish the proof we will use the following claim which is a variant of
Rosenthal’s subsequence splitting lemma.

Claim. There are sequences ( fk), (uk), (vk) and (wk) in Y satisfying the following conditions.

(a) fk ∈ A and fk = uk + vk + wk for k ∈ N.
(b) The sequence (uk) is weakly convergent.
(c) ∥vk∥ ≤ 2ε for k ∈ N.
(d) ∥

n
j=1 α jw j∥ ≥ (d − 3ε)

n
j=1 |α j | whenever n ∈ N and α1, . . . , αk are scalars.

Let us first show how the proof can be finished using this claim. The claim itself will be proved
afterwards. So suppose that we have such sequences ( fk), (uk), (vk) and (wk).

Take f ∗∗ to be any weak∗ cluster point of the sequence ( fk). Let ( fτ ) be a subnet of the
sequence ( fk) which weak∗ converges to f ∗∗ and (wτ ) be the corresponding subnet of the
sequence (wk). Denote the weak limit of (uk) by u. Take a weak∗ convergent subnet (wν)
of (wτ ) and denote the weak∗ limit by w∗∗. Then w∗∗ is a weak∗ cluster point of (wk), thus
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d (w∗∗, X) ≥ d − 3ε by (d) and [22, Lemma 5]. Further, f ∗∗
−w∗∗

− u is a weak∗ cluster point
of (vk), hence ∥ f ∗∗

− w∗∗
− u∥ ≤ 2ε by (c). It follows that

d ( f ∗∗, X) = d ( f ∗∗
− u, X) ≥ d (w∗∗, X)− ∥ f ∗∗

− w∗∗
− u∥ ≥ d − 5ε.

So,

d (clustX∗∗( fkn ), X) ≥ d − 5ε,

hence wckX (A) ≥ d − 5ε. Since ε ∈ (0, d
5 ) is arbitrary, wckX (A) ≥ d . This completes the

proof.
It remains to prove the claim. Fix c1 > 0 such thatd (A, c1 B) < d + ε. We will construct by

induction functions fk ∈ A and numbers ck > 0 for k ∈ N such that c1 is the number chosen
above and the following conditions are satisfied:

(i) d ( fk, ck B) >d (A, ck B)− ε,
(ii) ck+1 > ck ,

(iii)


E | f j | <
ε
2k for j = 1, . . . , k, whenever µ(E) ≤

1
ck+1

.

It is obvious that the inductive construction can be performed. For each k ∈ N set Ek = {t :

| fk(t)| > ck} and define the functions uk, vk and wk as follows:

• If | fk(t)| ≤ c1 then uk(t) = fk(t), vk(t) = 0, wk(t) = 0.
• If | fk(t)| ∈ (c1, ck] then

uk(t) =
c1

| fk(t)|
fk(t), vk(t) =


1 −

c1

| fk(t)|


fk(t), wk(t) = 0.

• If | fk(t)| > ck then

uk(t) =
c1

| fk(t)|
fk(t), vk(t) =

ck − c1

| fk(t)|
fk(t), wk(t) =


1 −

ck

| fk(t)|


fk(t).

Then fk = uk + vk + wk for each k ∈ N. It proves the condition (a). Further, since |vk(t) +

wk(t)| = |vk(t)| + |wk(t)| for each t , we get ∥vk + wk∥ = ∥vk∥ + ∥wk∥. So,

∥vk∥ = ∥vk + wk∥ − ∥wk∥ = d ( fk, c1 B)− d ( fk, ck B)

≤ d (A, c1 B)−d (A, ck B)+ ε ≤ d + ε − d + ε = 2ε,

which proves (c).
We continue by showing (d). So, fix n ∈ N and scalars α1, . . . , αn . Using the triangle inequal-

ity and the fact that wk = 0 outside Ek we get n
k=1

αkwk

 =

  n
k=1

αkwk

 dµ ≥

n
j=1


E j \


j<i≤n

Ei

 n
k=1

αkwk

 dµ

=

n
j=1


E j \


j<i≤n

Ei


j

k=1

αkwk

 dµ

≥

n
j=1

|α j |


E j \


j<i≤n

Ei

|w j | −


k< j

|αk |


E j \


j<i≤n

Ei

|wk |


≥

n
j=1


|α j |


E j

|w j | dµ−

n
i= j+1


Ei

|w j | dµ


−


k< j

|αk |


E j

|wk |


.
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Note that


E j
|w j | = d ( f j , c j B) ≥ d − ε. Further, it follows from the Chebyshev inequality

that µ(Ek) ≤
1
ck

for each k ∈ N (recall that A ⊂ BY ), so using the above condition (iii) we may
continue: n

k=1

αkwk

 ≥

n
j=1


|α j |


d − ε −

n
i= j+1

ε

2i


−


k< j

|αk |
ε

2 j



≥ (d − 2ε)
n

j=1

|α j | −

n
j=1

n
k=1

|αk |
ε

2 j ≥ (d − 3ε)
n

j=1

|α j |.

Finally, the sequence (uk) is contained in c1 B and hence it is relatively weakly compact.
Therefore we can without loss of generality (up to extracting a subsequence) suppose that it
weakly converges. This shows (b) and the proof is complete. �

In the rest of this section we will often deal with ℓ1-sums of Banach spaces. So, let us fix

some notation. Let X =


γ∈Γ Xγ


ℓ1

, where Xγ is a Banach space for each γ ∈ Γ .

If γ ∈ Γ is arbitrary, Pγ denotes the canonical projection of X onto Xγ . Further, if F ⊂ Γ is

arbitrary, PF denotes the canonical projection of X onto


γ∈F Xγ

ℓ1

. If F = ∅, we set P∅ to

be the projection onto {0}.

The spaces Xγ , γ ∈ Γ , and


γ∈F Xγ

ℓ1
, F ⊂ Γ , are considered canonically embedded

into X (other coordinates are set to be zero).

Lemma 7.2. Let Xγ , γ ∈ Γ , be a family of Banach spaces and let X =


γ∈Γ Xγ


ℓ1

. Let

A ⊂ X be a bounded set. Then the following hold:

(i) wckX (A) ≥ inf{ε > 0 : (∃F ⊂ Γ finite) (∀x ∈ A)(∥PΓ\F x∥ < ε)}.
(ii) If A is weakly compact, then for each ε > 0 there is a finite set F ⊂ Γ such that

∥PΓ\F x∥ < ε for each x ∈ A. In particular, the set C = {γ ∈ Γ : Pγ |A ≠ 0} is countable.
(iii) If, moreover, each Xγ is reflexive, then

ω(A) = wkX (A) = wckX (A)

= inf{ε > 0 : (∃F ⊂ Γ finite) (∀x ∈ A)(∥PΓ\F x∥ < ε)}.

Proof. (i) Let θ denote the right-hand side. The infimum is well defined as A is bounded. If
θ = 0, the inequality is obvious. So, suppose that θ > 0. Fix an arbitrary η ∈ (0, θ4 ). As
θ + η > θ , there is a finite set F0 ⊂ Γ such that ∥PΓ\F0 x∥ < θ + η for each x ∈ A. We will use
the following claim.

Claim. There is a sequence (xk) in A such that n
i=1

λi PΓ\F0 xi

 ≥ (θ − 4η)
n

j=1

|λ j |

whenever n ∈ N and λ1, . . . , λn are scalars.

Let us show how to conclude the proof using this claim. Let (xk) be the sequence provided by
the claim. Let x∗∗ be any weak∗ cluster point of (xk) in X∗∗. Since X = PF0 X ⊕1 PΓ\F0 X we
get

X∗∗
= (PF0 X)∗∗

⊕1(PΓ\F0 X)∗∗
= P∗∗

F0
X∗∗

⊕1 P∗∗

Γ\F0
X∗∗,
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so y∗∗
= P∗∗

Γ\F0
x∗∗ is a weak∗ cluster point of (PΓ\F0 xk), thus d (y∗∗, X) ≥ θ − 4η by

[22, Lemma 5]. Further, clearly d (x∗∗, X) ≥ d (y∗∗, X), thus

d (clustX∗∗(xk), X) ≥ θ − 4η,

in particular, wckX (A) ≥ θ − 4η. As η > 0 is arbitrary, we get wckX (A) ≥ θ which was to be
proven.

It remains to prove the claim. We will construct by induction elements xk ∈ A and finite sets
Fk ⊂ Γ for k ∈ N such that

• ∥PΓ\Fk−1 xk∥ > θ − η,
• Fk ⊃ Fk−1,
• ∥PΓ\Fk xi∥ < η for i ≤ k,
• ∥PFk\Fk−1 xk∥ > θ − η.

The construction is easy: recall that we have the set F0. Given Fk−1, we can find xk fulfilling
the first condition as θ − η < θ . Further, we can find a finite set Fk satisfying the other three
conditions using the properties of the ℓ1-sum.

Let us show that this sequence (xk) has the required property. Let n ≥ 1 be arbitrary and
λ1, . . . , λn be arbitrary scalars. Then n

i=1

λi PΓ\F0 xi

 ≥

n
j=1

PF j \F j−1


n

i=1

λi xi


≥

n
j=1


|λ j | ∥PF j \F j−1(x j )∥ −

j−1
i=1

|λi | ∥PF j \F j−1(xi )∥

−

n
i= j+1

|λi | ∥PF j \F j−1(xi )∥



=

n
j=1

|λ j | ∥PF j \F j−1(x j )∥

−

n
i=1

n
j=i+1

|λi | ∥PF j \F j−1 xi∥ −

n
i=1

i−1
j=1

|λi | ∥PF j \F j−1∥

=

n
j=1

|λ j | ∥PF j \F j−1(x j )∥

−

n
i=1

|λi |

∥PΓ\F0 xi∥ − ∥PΓ\Fi−1 xi∥ + ∥PFn\Fi xi∥


≥ (θ − η)

n
j=1

|λ j | − (θ + η − (θ − η)+ η)

n
i=1

|λi |

= (θ − 4η)
n

j=1

|λ j |.

This completes the proof of the claim and hence also (i) is proved.
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(ii) The first assertion follows easily from (i). Indeed, if A is weakly compact, then
wckX (A) = 0 and so the infimum is zero as well. To show the second assertion choose Fn ⊂ Γ
a finite set corresponding to ε =

1
n . Then C ⊂


n∈N Fn , hence it is countable.

(iii) Denote the last quantity by θ . Due to (i) and (2.5) it is enough to prove ω(A) ≤ θ . Let
ε > 0 be arbitrary. Then there is a finite set F ⊂ Γ such that ∥PΓ\F x∥ < θ + ε for each x
∈ A. Set AF = PF (A). Then AF is a bounded subset of the reflexive space PF (X), hence it is
relatively weakly compact. Therefore, ω(A) ≤d (A, AF ) ≤ θ + ε since, for any x ∈ A,

d (x, AF ) ≤ ∥x − PF x∥ = ∥PΓ\F x∥ < θ + ε.

Since ε > 0 is arbitrary, we get the sought inequality ω(A) ≤ θ . �

As an immediate consequence of Lemma 7.2(iii) we get the following proposition.

Proposition 7.3. Let X = ℓ1(Γ ) for an arbitrary set Γ and A ⊂ X be a bounded set. Then

χ(A) = ω(A) = wkX (A) = wckX (A) = inf

sup
x∈A


γ∈Γ\F

|xγ | : F ⊂ Γ finite

 .
The following two lemmata extend Proposition 7.1 for an arbitrary measure µ. In the first one

we prove a formula for ω(A).

Lemma 7.4. Let X = L1(µ), where µ is an arbitrary non-negative σ -additive measure and
A ⊂ X be a bounded set. Then

ω(A) = inf


sup
f ∈A


(| f | − cχE )

+ dµ : c > 0, µ(E) < ∞


.

Proof. We start by proving the inequality ‘≤’. To do that we fix c > 0 and a measurable set E
of finite measure. Let K = {g ∈ X : |g| ≤ cχE µ-a.e.}. Then K is weakly compact. Let f ∈

X be arbitrary. Then clearly d ( f, K ) =

(| f | − cχE )

+ dµ. Indeed, for each g ∈ K we have
| f − g| ≥ (| f | − cχE )

+ µ-a.e. and the function g defined by

g(t) =

 f (t) if | f (t)| ≤ cχE (t),

c
f (t)

| f (t)|
if | f (t)| > cχE (t)

belongs to K and ∥ f − g∥ =

(| f | − cχE )

+ dµ. It follows that

d (A, K ) = sup
f ∈A


(| f | − cχE )

+ dµ

and the inequality ‘≤’ is proved.
Before proving the converse inequality observe that without loss of generality we can suppose

that µ is semifinite, i.e., for each measurable set E with µ(E) > 0 there is a measurable set
E ′

⊂ E with 0 < µ(E ′) < ∞. Indeed, any µ can be canonically expressed as µ = µ1 + µ2
where µ1 is semifinite and µ2 takes only values 0 and ∞ (see, e.g., [21, Section 5]). Moreover,
this canonical decomposition fulfills the following property:

∀E, µ1(E) < ∞ ∃E ′
⊂ E : µ(E ′) = µ1(E

′) = µ1(E).
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Then L1(µ) is canonically isometric to L1(µ1) and the quantity on the right-hand side is the
same for µ and µ1.

So, suppose that µ is semifinite. Let (Eγ )γ∈Γ be a maximal family of measurable sets
satisfying the following conditions:

• 0 < µ(Eγ ) < ∞ for each γ ∈ Γ ,
• µ(Eγ ∩ Eγ ′) = ∅ for distinct γ, γ ′

∈ Γ .

Let µγ be the restriction of µ to Eγ , i.e., µγ (E) = µ(E ∩ Eγ ). Then (µγ )γ∈Γ are mutually
singular finite measures such that µ =


γ∈Γ µγ . Then L1(µ) is canonically isometric to the

ℓ1-sum of the spaces L1(µγ ) for γ ∈ Γ (cf. [21, Proof of Theorem 5.1]).
Now we are ready to show the inequality ‘≥’. Let ε > 0 be arbitrary. Then there is a weakly

compact set K ⊂ X withd (A, K ) < ω(A) + ε. By Lemma 7.2 there is F ⊂ Γ finite such that
for each f ∈ K we have

| f |(1 − χ 
γ∈F

Eγ ) dµ < ε.

Set EF =

γ∈F Eγ , µF =


γ∈F µγ and K F = { f χEF : f ∈ K }. Then K F is weakly compact

in L1(µF ). By (7.1) we obtain c > 0 such that

sup


(| f | − c)+ dµF : f ∈ K F


< ε.

Fix f ∈ A arbitrary. Then d ( f, K ) < ω(A)+ ε, so there is g ∈ K with ∥ f − g∥ < ω(A)+ ε.
Then 

(| f | − cχEF )
+ dµ ≤


| f − g| dµ+


(|g| − cχEF )

+ dµ

< ω(A)+ ε +


EF

(|g| − c)+ dµF +


|g|(1 − χEF ) dµ

< ω(A)+ 3ε.

Thus

sup
f ∈A


(| f | − cχEF )

+ dµ ≤ ω(A)+ 3ε.

As ε > 0 is arbitrary, we get the inequality ‘≥’. �

The last result of this section finishes the extension of Proposition 7.1 to arbitrary µ.

Theorem 7.5. Let X = L1(µ), where µ is an arbitrary non-negative σ -additive measure and
A ⊂ X be a bounded set. Then ω(A) = wkX (A) = wckX (A).

Proof. Let A ⊂ L1(µ) be a bounded set. It is enough to prove that wckX (A) ≥ ω(A). This will
be done using Proposition 7.1, Lemma 7.2 (or, more exactly, claims in the respective proofs) and
the formula from Lemma 7.4. We will proceed in several steps.

STEP 1: There is a sequence ( fk) in A such that for each subsequence ( fkn ) we have
ω({ fkn : n ∈ N}) = ω(A).

For each f ∈ L1(µ) set En( f ) = {t : | f (t)| > 1
n }. Let us remark that all the sets En( f ) have

obviously finite measure.
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By induction we will construct for each k ∈ N a function fk ∈ A and a set Ek of finite
measure.

We start by choosing f1 ∈ A such that


| f1| dµ > ω(A)− 1. This is possible by Lemma 7.4.
Having constructed f1, . . . , fk , set Ek = Ek( f1) ∪ · · · ∪ Ek( fk). Then Ek is a set of finite

measure and hence there is some fk+1 ∈ A such that
(| fk+1| − kχEk )

+ dµ > ω(A)−
1

k + 1
.

This is possible again due to Lemma 7.4.
This completes the inductive construction. We claim that the sequence ( fk) has the required

properties. This will be done using Lemma 7.4.
Set E∞ =


k∈N Ek . Then all the functions fk are equal to zero outside E∞. Let E be a set

of finite measure and c > 0 be arbitrary. Fix an arbitrary ε > 0. We can find n ∈ N such that
n ≥ c, 1

n <
ε
2 and µ((E ∩ E∞) \ En) <

ε
2c . Then for each k ≥ n we have

(| fk+1| − cχE )
+ dµ =


E∞

(| fk+1| − cχE )
+ dµ

=


Ek

(| fk+1| − cχE )
+ dµ+


E∞\Ek

(| fk+1| − cχE )
+ dµ

≥


Ek

(| fk+1| − c)+ dµ+


E∞\Ek

(| fk+1| − cχE )
+ dµ

=


E∞

(| fk+1| − cχEk )
+ dµ−


E∞\Ek

| fk+1| dµ

+


E∞\Ek

(| fk+1| − cχE )
+ dµ

≥


E∞

(| fk+1| − kχEk )
+ dµ

−


E∞\Ek

(| fk+1| − (| fk+1| − cχE )
+) dµ

≥ ω(A)−
1

k + 1
−


(E∩E∞)\Ek

(| fk+1| − (| fk+1| − c)+) dµ

≥ ω(A)−
1

k + 1
− cµ((E ∩ E∞) \ Ek) > ω(A)− ε.

This completes the proof of Step 1. Indeed, let ( fkn ) be a subsequence of ( fk). Let E be a set
of finite measure, c > 0 and ε > 0. By the previous paragraph,

(| fkn | − cχE )
+ dµ > ω(A)− ε

for kn large enough. Hence

ω({ fkn : n ∈ N}) ≥ ω(A)− ε

by Lemma 7.4. Since ε > 0 is arbitrary, we get ω({ fkn : n ∈ N}) ≥ ω(A). The converse
inequality is obvious.
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STEP 2. Let A0 = { fk : k ∈ N}, where ( fk) is the sequence from Step 1. Set

θ = inf

ε > 0 : (∃E, µ(E) < ∞)(∀ f ∈ A0)


| f |(1 − χE ) dµ < ε


.

By Lemma 7.2 we get wckX (A0) ≥ θ . (Indeed, let Eγ and µγ be as in the proof of Lemma 7.4.
Then θ is not greater than the quantity from Lemma 7.2.) In particular, we have θ ≤ ω(A0) and,
if θ = ω(A0), then wckX (A0) = ω(A0) and hence wckX (A) ≥ wckX (A0) = ω(A0) = ω(A)
and the proof is finished.

So suppose that θ < ω(A0) and fix an arbitrary ε ∈ (0, 1
6 (ω(A0)− θ)). By the definition of θ

we can find E0 with µ(E0) < ∞ such that for all f ∈ A0 we have


| f |(1 − χE0) dµ < θ + ε.
STEP 3. Let Eγ and µγ be as in Lemma 7.4 such that there is γ0 ∈ Γ with Eγ0 = E0. Let µ0

denote the restriction of the measure µ to E0. By the claim in the proof of Lemma 7.2(i), there
is a subsequence ( fkn ) of ( fk) such that n

j=1

λ j fk j (1 − χE0)

 ≥ (θ − 4ε)
n

j=1

|λ j |

for each n ∈ N and any choice of scalars λ1, . . . , λn .
STEP 4. Set A1 = { fkn : n ∈ N}. By Step 1 we have ω(A1) = ω(A0) = ω(A). Further set

A2 = { fknχE0 : n ∈ N}. Then ω(A2) ≥ ω(A)− θ − ε.
Indeed, it follows from Lemma 7.4 that for each c > 0 and δ > 0 there is n ∈ N with
(| fkn | − cχE0)

+ dµ > ω(A)− δ. Then
(| fkn |χE0 − cχE0)

+ dµ0 =


(| fkn | − cχE0)

+ dµ−


| fkn |(1 − χE0) dµ

> ω(A)− δ − θ − ε.

So, ω(A2) ≥ ω(A)−δ−θ−ε by Proposition 7.1. Since δ > 0 is arbitrary, ω(A2) ≥ ω(A)−θ−ε.
STEP 5. By the claim in the proof of Proposition 7.1 there is a subsequence ( fkn j

) and

sequences (u j ), (v j ) and (w j ) in L1(µ0) ⊂ X such that

• fkn j
χE0 = u j + v j + w j for j ∈ N,

• (u j ) is weakly convergent,
• ∥v j∥X ≤ 2ε for j ∈ N,
• ∥

n
j=1 λ jw j∥X ≥ (ω(A)− θ − 4ε)

n
j=1 |λ j |, n ∈ N and λ1, . . . , λn are scalars.

STEP 6. CONCLUSION. We have

fkn j
= u j + v j + w j + fkn j

(1 − χE0)

for each j ∈ N. Further, n
j=1

λ j (w j + (1 − χE0) fkn j
)

 =

 n
j=1

λ jw j

+

 n
j=1

λ j (1 − χE0) fkn j


≥ (ω(A)− 8ε)

n
j=1

|λ j |

for arbitrary scalars λ1, . . . , λn and n ∈ N.
Now, in the same way as in the proof of Proposition 7.1 we can show that d ( f ∗∗, X) >

ω(A) − 10ε whenever f ∗∗ is a weak∗ cluster point of ( fkn j
). It follows that wckX (A) ≥

ω(A)− 10ε. Since ε > 0 is arbitrary, this completes the proof. �
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We remind that the quantity ω(A) can be explicitly computed, see Lemma 7.4 for the general
case and Proposition 7.1 for the case of finite µ.

Corollary 7.6. Every L1(µ) space, where µ is an arbitrary non-negative σ -additive measure,
has the dual quantitative Dunford–Pettis property.

Proof. The fact that L1(µ) spaces have the Dunford–Pettis property, assertion (vii) of
Theorems 5.2 and 7.5 immediately imply condition (v) in Theorem 5.5. �

8. Direct quantification for C(K ) spaces

In this section we prove that L∞ spaces possess the direct quantitative Dunford–Pettis
property. Using the results of the previous section we prove exact results for C(K ) spaces (or,
more generally, for L1 preduals) and for preduals of ℓ1(Γ ). At the end of this section we transfer
these properties to L∞ spaces.

Theorem 8.1. Let X be an L1 predual, i.e., a Banach space such that X∗ is isometric to L1(µ)

for a non-negative σ -additive measure µ. In particular, X can be the space C0(Ω) for a locally
compact Hausdorff space Ω , or the space A(K ) of continuous affine functions on a Choquet
simplex K . Let Y be any Banach space and T : X → Y a bounded linear operator. Then

wkY (T ) ≤ 2wkX∗


T ∗


≤ 2ω(T ∗) = 2wkX∗


T ∗


≤ 4wkY (T ) ≤ 4ω(T ),

cc (T ) ≤ 2ω(T ∗) = 2wkX∗


T ∗

.

The first line of inequalities follows from (2.8), (2.5) and Theorem 7.5. It shows the
equivalence of quantities wkY (T ) ,wkX∗ (T ∗) and ω(T ∗). In [24, Example 3.2] we show that
the quantity ω(T ) is not equivalent to the other three quantities even in the case of a C(K ) space.

The second line shows the direct quantitative version of the Dunford–Pettis property and
follows from the first line and Theorem 5.2(ii) using the fact that L1 preduals have the
Dunford–Pettis property.

We continue by a stronger version of Theorem 8.1 in the special case of X∗ being isometric
to the space ℓ1(Γ ).

Theorem 8.2. Let X be a Banach space such that X∗ is isometric to ℓ1(Γ ) for a set Γ . In
particular, X can be the space C(K ) for K scattered compact space or the space c0(Γ ). Let Y
be any Banach space and T : X → Y a bounded linear operator. Then the following inequalities
hold.

wkY (T ) ≤ ω(T ) ≤ χ(T ) ≤ cc (T )

≤ 2ω(T ∗) = 2χ(T ∗) = 2wkX∗


T ∗


≤ 4wkY (T ) .

The theorem follows from Theorem 6.3 and Proposition 7.3, and shows that in this case
weakly compact operators, completely continuous operators and compact operators coincide
and, moreover, all the quantities measuring non-compactness, weak non-compactness and
non-complete continuity are equivalent. So, the spaces satisfying the assumptions of Theo-
rem 8.2 have both the direct quantitative Dunford–Pettis property and the quantitative re-
ciprocal Dunford–Pettis property. Even though we did not define the quantitative reciprocal
Dunford–Pettis property, we consider the inequality wkY (T ) ≤ Ccc (T ) to be an acceptable
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candidate because it quantifies the fact that any completely continuous operator is weakly com-
pact (see also remarks after Theorem 6.3).

It is natural to ask whether such an inequality can be proved for general L1 preduals. It is
proved in [24] that this is the case for C(K ) spaces. More precisely, if X is a C(K ) space,
Theorem 3.1 of [24] shows that, for any Banach space Y and an operator T : X → Y , it holds

1
4πwkY (T ) ≤ cc (T ) ≤ 4wkY (T ). On the other hand, an example is presented in [24] showing
that cc (·) is not equivalent to ω(·) for operators on C(K ) spaces.

Finally, the last theorem of this section proves the direct quantitative Dunford–Pettis property
for every L∞ space in general. We will use the following easy proposition.

Proposition 8.3. Let X and Y be Banach spaces such that Y is isomorphic to a complemented
subspace of X. If X has either version of the quantitative Dunford–Pettis property then Y has
the same version of the quantitative Dunford–Pettis property.

Proof. It is obvious that both versions of the quantitative Dunford–Pettis properties are
preserved by isomorphisms (only the respective constants may change). So, suppose that Y is
a complemented subspace of X . Let Q be a bounded linear projection of X onto Y .

Suppose first that X has the direct quantitative Dunford–Pettis property, i.e., there is C > 0
such that cc (T ) ≤ CwkZ (T ) whenever T : X → Z is an operator and Z is a Banach space. To
show that Y has the same property, fix any Banach space Z and an operator T : Y → Z . Since
BY ⊂ Q(BX ) ⊂ ∥Q∥BY , we have

cc (T ) ≤ cc (T Q) ≤ CwkZ (T Q) ≤ C∥Q∥wkZ (T )

and we are done.
Now suppose that X has the dual quantitative Dunford–Pettis property, i.e., there is C > 0

such that caρX (xn) ≤ Cδ (xn) for each bounded sequence (xn) in X . So, let (xn) be a bounded
sequence in Y . Then δ (xn) is the same when considered with respect to X or with respect to Y .
Further, Q∗ is an isomorphic embedding of Y ∗ into X∗, in particular Q∗(BY ∗) ⊂ ∥Q∥BX∗ ,
so caρY (xn) ≤ ∥Q∥caρX (xn). It follows that caρY (xn) ≤ C∥Q∥δ (xn) and the proof is
completed. �

Theorem 8.4. Every L∞ space X has the direct quantitative Dunford–Pettis property.

Proof. By [19, pp. 57–58], X∗ is isomorphic to a complemented subspace of some L1(µ)

space Y . By Corollary 7.6, Y has the dual quantitative Dunford–Pettis property. Therefore, by
Proposition 8.3, X∗ also has the dual quantitative Dunford–Pettis property. Consequently, using
Theorem 5.7(b), X has the direct quantitative Dunford–Pettis property. �

Corollary 8.5. Every L1 space has the dual quantitative Dunford–Pettis property.

Proof. This follows from Theorem 5.7(a) and the fact that the dual of every L1 space is an L∞

space; see [19, p. 58]. �

9. Dual quantification for C(K ) spaces

In this section we show that L∞ spaces enjoy the dual quantitative Dunford–Pettis property.
The first step is again an exact result on C(K ) spaces.

We start by the following proposition. Its first part is a quantification of the fact that in
C(K ) any bounded pointwise convergent sequence is weakly convergent. The second part is
a quantitative version of the Egoroff theorem.
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Proposition 9.1. Let K be a compact space and let ( fn) be a bounded sequence of continuous
functions on K . Then the following assertions hold.

(i) δ ( fn) = supx∈K infn∈N supi, j≥n | fi (x)− f j (x)|.
(ii) Let µ be a positive Radon measure on K . Then for any ε > 0 there exists a compact set

L ⊂ K such that µ(K \ L) ≤ ε and ca ( fn|L) ≤ δ ( fn), where the sequence of functions
( fn|L) is considered in C(L).

Proof. (i) The inequality ‘≥’ is obvious. Let us prove the converse one. Denote by c the quantity
on the right-hand side. For n ∈ N we define the function

gn(x) = sup
i, j≥n

| fi (x)− f j (x)|, x ∈ K .

Then gn is a non-negative lower semicontinuous (and hence Borel) function on K . Let ν ∈

BC(K )∗ be arbitrary. By the Riesz representation theorem we identify ν with a signed or complex
Radon measure on K . Then

inf
n∈N

sup
i, j≥n

 ( fi − f j ) dν

 ≤ inf
n∈N

sup
i, j≥n


| fi − f j | d|ν| ≤ inf

n∈N


gn d|ν|

=


inf
n∈N

gn d|ν| ≤


c d|ν| ≤ c.

The only equality in this computation follows from the monotone convergence theorem, all the
inequalities are trivial. Since δ ( fn) is the supremum of the quantities on the left-hand side over
µ ∈ BC(K )∗ , we get δ ( fn) ≤ c and conclude the proof.

(ii) For any two natural numbers m and k we define

Qm,k =


x ∈ K : sup

i, j≥m
| fi (x)− f j (x)| > δ ( fn)+

1
k


.

The sets Qm,k are open in K , Qm+1,k ⊂ Qm,k , and


m Qm,k = ∅. It follows that µ(Qm,k) → 0
as m → ∞. One can therefore choose mk so that µ(Qmk ,k) ≤

ε
2k . If x belongs to K \ Qmk ,k , we

have

| fi (x)− f j (x)| ≤ δ ( fn)+
1
k

for any i, j ≥ mk . It suffices to take L = K \


k Qmk ,k . �

We will need the following well-known characterization of weakly compact subsets of L1(µ).

Lemma 9.2 (Dunford–Pettis, See [9, Theorem 4.21.2]). Let µ be a positive Radon measure on a
compact space K . In order that a subset P of L1(µ) be relatively weakly compact, it is necessary
and sufficient that the following conditions be fulfilled:

• sup{


| f |dµ : f ∈ P} < ∞.
• Given ε > 0, there exists a number δ > 0 such that

sup


A
| f |dµ : f ∈ P


≤ ε

provided A ⊂ K is measurable and µ(A) ≤ δ.

The following lemma is the key step to prove the dual quantitative Dunford–Pettis property
of C(K ) spaces.
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Lemma 9.3. Let K be a compact space and µ be a positive Radon measure on K . Consider
L1(µ) canonically embedded into C(K )∗. Then for any bounded sequence ( fn) in C(K ) and
any relatively weakly compact subset P of BL1(µ) we have

inf
n0∈N

sup{qP ( fi − f j ) : i, j ≥ n0} ≤ δ ( fn) .

Proof. Without loss of generality, let us assume that ∥ fn∥ ≤ 1 for every n ∈ N. Let ε > 0. Using
Lemma 9.2, we first choose δ > 0 so that for any measurable set A satisfying µ(A) ≤ δ, one has

A
|h|dµ ≤

ε

4

for all h ∈ P . By Proposition 9.1, we may choose a compact set L ⊂ K such that µ(K \ L) ≤ δ

and ca ( fn|L) ≤ δ ( fn). It follows that for any h in P, n0 ∈ N and i, j ≥ n0 ∈ N, one has
K

h( fi − f j )dµ

 ≤


L

|h( fi − f j )|dµ+


K\L

|h( fi − f j )|dµ

≤ sup
k,l≥n0

∥( fk − fl)|L∥ + 2 ·
ε

4
.

Since the right-hand side tends to ca ( fn|L) +
ε
2 as n0 → ∞, we can determine n1 ∈ N

independent of h in P such that i, j ≥ n1 entails h( fi − f j )dµ

 < δ ( fn)+ ε

for all h in P . This concludes the proof. �

Theorem 9.4. Let K be a compact space. Then for any bounded sequence ( fn) in C(K ) we have

caρ ( fn) = δ ( fn) .

In particular, C(K ) has the dual quantitative Dunford–Pettis property.

Proof. It is enough to prove caρ ( fn) ≤ δ ( fn), since the other inequality is always true. Let H
be a weakly compact subset of BC(K )∗ . In order to establish that

inf
n0∈N

sup{qH ( fi − f j ) : i, j ≥ n0} ≤ δ ( fn) ,

it suffices to prove this inequality for any countable subset of H . So we may assume that H is
countable a relatively weakly compact.

As in the proof of [9, Theorem 9.4.4], the problem is reducible to the case in which
H = {h · µ : h ∈ P}, where µ is a certain positive Radon measure on K and P is a relatively
weakly compact subset of L1(µ). Indeed, let H = {µn : n ∈ N}. Then µ =


|µn |

2n is a positive
Radon measure on K . We define u : L1(µ) → C(K )∗ by u(h) = h · µ for every h ∈ L1(µ).
Since each µn is absolutely continuous relative to µ, u(L1(µ)) contains each µn . Moreover, u is
an isometric isomorphism of L1(µ) onto a closed subspace of C(K )∗ containing H .

Application of Lemma 9.3 now finishes the proof. �

Corollary 9.5. Let µ be a non-negative σ -additive measure. Then the space X = L1(µ) has the
direct quantitative Dunford–Pettis property. Moreover,
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cc (T ) ≤ 4wkX∗


T ∗


whenever Y is a Banach space and T : X → Y an operator.

Proof. The space X∗ is a C(K )-space, so it is enough to use Theorems 9.4 and 5.7. Let us prove
the ‘moreover’ part. By Theorem 9.4, the space X∗ satisfies the condition (iv) of Theorem 5.5
with C = 1. By Remark 5.8, the space X satisfies the condition (iv) of Theorem 5.4 with C = 1
as well. It follows from the proof of the implications (iv) ⇒ (v) and (v) ⇒ (i) of Theorem 5.4
that X satisfies the respective condition (i) with C = 4. This completes the proof. �

Theorem 9.6. Every L∞ space X has the dual quantitative Dunford–Pettis property.

Proof. By [19, pp. 57–58], X∗ is isomorphic to a complemented subspace of a space of the
form L1(µ) for a non-negative σ -additive measure µ. Hence X∗ has the direct quantitative
Dunford–Pettis property by Corollary 9.5 and Proposition 8.3. Consequently, X has the dual
quantitative Dunford–Pettis property by Theorem 5.7. �

Corollary 9.7. Every L1 space has the direct quantitative Dunford–Pettis property.

10. An example

In this section we present two results—the first one is a detailed version of Example 5.10; the
second one compares the quantities wk (·) and ω(·) in the space c0(Γ ). It is used to formulate
the example in a more precise way, but it is simultaneously of an independent interest.

Example 10.1. There is a Banach space X with the following properties

(i) The space X∗ is a separable L-embedded space with the Schur property. In particular,
X∗ has the direct quantitative Dunford–Pettis property and X has the dual quantitative
Dunford–Pettis property.

(ii) There is a sequence (An) of subsets of BX∗ such that ω(An) = χ(An) ≥
1
4 for each n ∈ N

and wkX∗ (An) → 0.
(iii) There is a sequence (Tn) of bounded linear operators Tn : X → c0 such that ∥Tn∥ ≤

2, cc (Tn) ≥ 1 for each n ∈ N and ω(Tn) = wkc0 (Tn) → 0.
(iv) The space X does not have the direct quantitative Dunford–Pettis property and X∗ does not

have the dual quantitative Dunford–Pettis property.
(v) The space X ⊕ X∗ has the Dunford–Pettis property but does not have any of the two variants

of quantitative Dunford–Pettis property.

Proof. We will construct the space X and operators Tn satisfying the conditions (i) and (iii).
Then the assertions (iv) and (v) will be satisfied automatically. Indeed, it follows from (iii)
that X does not satisfy the condition (vi) of Theorem 5.4 and thus X does not have the direct
quantitative Dunford–Pettis property. Using Theorem 5.7 we then conclude that X∗ has not
the dual quantitative Dunford–Pettis property, which completes the proof of the assertion (iv).
Further, by (i) both X and X∗ have the Dunford–Pettis property, hence so does X ⊕ X∗. It
follows from (iv) and Proposition 8.3 that X ⊕ X∗ does not have any of the two quantitative
versions of the Dunford–Pettis property.

Let us continue by describing the space X and the operators Tn . Fix an arbitrary α > 0. Set

Bα = αBc0 + Bℓ1 ⊂ c0.
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Since Bℓ1 is weakly compact in c0, Bα is the closed unit ball of an equivalent norm on c0. Denote
this space by Xα and the identity mapping of Xα onto c0 by Iα . Then Iα is an onto isomorphism
and ∥Iα∥ = 1 + α. So, in particular Xα is isomorphic to c0 and hence X∗

α is isomorphic to ℓ1.
The norm on X∗

α is easily computed to be given by the formula

∥x∗
∥
∗
α = α∥x∗

∥1 + ∥x∗
∥∞.

Further, X∗∗
α is isomorphic to ℓ∞ and by the Goldstine theorem the closed unit ball is equal to

Bα
w∗

= αBℓ∞ + Bℓ1 .

The third dual X∗∗∗
α is isomorphic to ℓ∗∞ = M(βN), the space of all (signed or complex) Radon

measures on the Čech–Stone compactification of N. The norm is given by the formula

∥µ∥
∗∗∗
α = α∥µ∥M(βN) + ∥(µ{k})∞k=1∥∞.

It follows that X∗
α is L-embedded. Indeed, the respective projection of X∗∗∗

α onto X∗
α can be

defined by

µ → µ|N = (µ{k})∞k=1, µ ∈ X∗∗∗
α .

Moreover, X∗
α has the Schur property, as it is isomorphic to ℓ1.

Further, let

X =


n∈N

X1/n


c0

.

Then

X∗
=


n∈N

X∗

1/n


ℓ1

,

in particular, X∗ is an ℓ1-sum of L-embedded separable spaces with the Schur property, thus it is
a separable L-embedded space (by [18, Proposition 1.5]) and has the Schur property as well (this
follows by a straightforward modification of the proof that ℓ1 has the Schur property; see [10,
Theorem 5.19]). It follows that the assertion (i) is satisfied (using, moreover, Proposition 6.2 and
Theorem 5.7).

Denote by Pn the projection of X onto the n-th coordinate and set Tn = I1/n Pn . As ∥Pn∥ = 1,
we have ∥Tn∥ ≤ 1 +

1
n ≤ 2.

Further, fix an arbitrary n ∈ N.
Let (xk) be the canonical basis of X1/n (embedded in X ). Then (xk) is a weakly Cauchy

sequence in BX and ca (Tn xk) = 1. Thus cc (Tn) ≥ 1.
Further, ω(Tn) ≤

1
n , as Tn BX = B1/n = Bℓ1 +

1
n Bc0 and Bℓ1 is weakly compact in c0. Hence

ω(Tn) → 0. Since wkc0 (Tn) ≤ ω(Tn) by (2.9), we get wkc0 (Tn) → 0 as well. That in fact
wkc0 (Tn) = ω(Tn) follows from Proposition 10.2. This completes the proof of the assertion
(iii).

It remains to prove the assertion (ii). To do that it is enough to set An =
1
2 T ∗

n (Bℓ1). To verify
it let us consider the operator T ∗

n : ℓ1 → X∗. We have T ∗
n = P∗

n I ∗

1/n . The operator P∗
n is the

injection of X∗

1/n into X∗ (made by setting other coordinates to be 0). Further, operator I ∗
α is

the identity of ℓ1 onto X∗
α . In particular, let (ek) be the canonical basic sequence in X∗

α . Then
∥ek − el∥

∗
α = 2α + 1 for k, l ∈ N distinct, thus ca (ek) > 1. In particular, β(I ∗

α ) > 1. As P∗
n is
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an isometric embedding, we have β(T ∗
n ) = β(I ∗

1/n) > 1. Since X∗ has the Schur property, using

(2.2) we obtain ω(T ∗
n ) = χ(T ∗

n ) >
1
2 , thus ω(An) = χ(An) >

1
4 .

Finally, using (ii) and (2.8) we have

wkX∗ (An) =
1
2

wkX∗


T ∗

n


≤ wkc0 (Tn) → 0.

This completes the proof. Anyway, let us estimate wkX∗


T ∗

n


explicitly. Let us first notice that

wkX∗


T ∗

n


≤ wkX∗

1/n


I ∗

1/n


(as P∗

n is an isometric embedding). So, let us estimate wkX∗
α


I ∗
α


:

We have I ∗
α (Bℓ1) = Bℓ1 ⊂ X∗

α . By the Goldstine theorem its weak∗ closure in X∗∗∗
α is equal

to BM(βN). Fix any µ ∈ BM(βN). Then µ|N ∈ X∗
α and

∥µ− µ|N∥
∗∗∗
α = α∥µ− µ|N∥M(βN) ≤ α,

thus

wkX∗
α


I ∗
α


=d (BM(βN), X∗

α) ≤ α.

It follows that

wkX∗


T ∗

n


≤ wkX∗

1/n


I ∗

1/n


≤

1
n

→ 0. �

The following proposition was used in the previous example to precise the formulation. Any-
way, it is of independent interest as it is a partial answer to a general open question (see the next
section).

Proposition 10.2. Let X = c0(Γ ) for a set Γ . Then wkX (A) = ω(A) for any bounded set
A ⊂ X.

Moreover, if K ⊂ X∗∗ is weak∗ compact, then there is weakly compact set L ⊂ X withd (K , L) =d (K , X).

Proof. It is enough to prove the ‘moreover’ statement. Indeed, wkX (A) ≤ ω(A) by (2.5).

Conversely, wkX (A) = d (Aw∗

, X) and A
w∗

is weak∗ compact in X∗∗. If we are able to find

L ⊂ X weakly compact such thatd (Aw∗

, L) =d (Aw∗

, X), then

ω(A) ≤d (A, L) ≤d (Aw∗

, L) =d (Aw∗

, X) = wkX (A) .

So, let us prove the ‘moreover’ statement. The space X∗∗ is canonically identified with ℓ∞(Γ )
and the weak∗ topology on bounded sets coincides with the topology of pointwise convergence.
Fix an arbitrary c > 0 and define the mapping Ψc : ℓ∞(Γ ) → ℓ∞(Γ ) by the formula

Ψc(x)(γ ) =

0 if |x(γ )| ≤ c,

x(γ )


1 −

c

|x(γ )|


if |x(γ )| > c.

Then Ψc is pointwise-to-pointwise continuous. Moreover, ∥Ψc(x)− x∥ ≤ c for each x ∈ ℓ∞(Γ )
and Ψc(x) ∈ c0(Γ ) if and only if d (x, c0(Γ )) ≤ c. Indeed,

d (x, c0(Γ )) = inf


sup

γ∈Γ\F
|x(γ )| : F ⊂ Γ finite


.

So, let K ⊂ X∗∗ be weak∗ compact. Set c =d (K , X). Then L = Pc(K ) is contained in X , it is
weakly compact andd (K , L) ≤ c. This completes the proof. �
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11. Open problems

In the final section we collect some open questions which arised naturally during our research.

Question 11.1. Let X = C(K ) (or, more generally, let X be an L1 predual). Are the quantities
ω(·) and wkX (·) equal, or at least equivalent?

By Proposition 10.2, the two quantities are equal for X = c0(Γ ). It follows that they are
equivalent for X = C(αΓ ), the space of continuous functions on the one-point compactification
of the discrete space Γ , as this space is isomorphic to c0(Γ ). However, we do not know whether
even in this easy example the quantities are in fact equal. We also do not know what happens for
general C(K ) spaces, in particular for C([0, 1]).

The fact that this question is interesting and may be rather hard is illustrated by the fact that
from the positive answer it would easily follow that Eberlein compact spaces are preserved by
continuous mappings. This is a well-known but nontrivial result. Let us comment this connection
in more detail. Recall that a compact space K is called Eberlein if it is homeomorphic to a subset
of (X, w) for a Banach space X .

So, suppose that the previous question has positive answer. Let K be a continuous image of
an Eberlein compact space. Then the space C(K ) is easily seen to be isomorphic to a subspace of
a weakly compactly generated space. Using Theorem 2.3 and our assumption we get that C(K )
is in fact weakly compactly generated (we remark that we use only the easy implication of the
second statement of Theorem 2.3). Hence, K is easily seen to be an Eberlein compact space.

Question 11.2. Let X be a Banach space. Suppose that there is C > 0 such that for each oper-
ator T : X → c0 we have cc (T ) ≤ Cwkc0 (T ). Does X have the direct quantitative Dunford–
Pettis property?

By Theorem 5.1, the space X does have the Dunford–Pettis property. Further, to ensure that
X has the direct quantitative Dunford–Pettis property it is enough that such an inequality holds
for operators from X to ℓ∞. It is not clear whether ℓ∞ can be replaced by c0. The space X from
Example 10.1 which fails the direct quantitative Dunford–Pettis property fails this property also
for operators to c0.

Question 11.3. Let X be a Banach space. Suppose that there is C > 0 such that for each Banach
space Y and each operator T : X → Y we have cc (T ) ≤ Cω(T ). Does X have the direct
quantitative Dunford–Pettis property?

The stated property is a formally weaker version of the direct quantitative Dunford–Pettis
property (see Theorem 5.4(vi) and (2.4)). We do not know any example showing that this property
is really weaker, the space X from Example 10.1 fails even the weaker version. Let us remark that
the positive answer to Question 11.2 implies the positive answer to the present question due to
Proposition 10.2. Moreover, the positive answer to Question 11.1 also implies the positive answer
to the last question. Indeed, by Theorem 5.4 it is enough to consider operators T : X → ℓ∞ and
ℓ∞ is a C(K ) space.

Question 11.4. Suppose that X is a Banach space such that X∗ satisfies the dual quantitative
Dunford–Pettis property.

(a) Does X∗ have the direct quantitative Dunford–Pettis property?
(b) Does X have the dual quantitative Dunford–Pettis property?
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It follows from Theorem 5.7 that the positive answer to (a) implies the positive answer to
(b). Example 10.1 shows that the two versions of the quantitative Dunford–Pettis property are
incomparable in general. However, it does not answer the above question. In particular, we do
not know whether X∗∗ has the dual quantitative Dunford–Pettis property if X is the space from
Example 10.1.
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