



## KIBABII UNIVERSITY

## UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

# SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.Sc. (CHEMISTRY)

COURSE CODE:

SCH 213

COURSE TITLE:

BASIC CHEMICAL THERMODYNAMICS

**DATE**: 14/12/2022

TIME: 9:00-11:00AM

### INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer Question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

| QUESTION ONE (30 Marks) (a) Define the following terms i. Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| <ul> <li>ii. Heat</li> <li>iii. Thermodynamics</li> <li>iv. Adiabatic process</li> <li>(b) Deduce the significance of gas constant R using ideal gas equation pv</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2Marks)<br>(2Marks)<br>(2Marks)<br>(2Marks)<br>= nRT    |
| (c) (i) State the Hess's law<br>(ii) . From the following enthalpies of reaction<br>$H_{2 (g)} + O_{2 (g)} \rightarrow 2H_2O_{(g)} \Delta H = -285 \text{ kJ}$<br>$C_{(s)} + O_{2 (g)} \rightarrow CO_{2 (g)} \Delta H = -394 \text{ kJ}$<br>$2 C_{(s)} + 2 H_{2 (g)} \rightarrow C_2H_4 (g) \Delta H = -52.3 \text{ kJ}$<br>Calculate Heat of the reaction of $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$<br>(d)(i) Starting with $\Delta E = q - W$ show that the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3Marks)<br>(2marks)                                     |
| by $C_v = (\frac{dE}{dT})$ (e) (i) Define a system  (ii) State three thermodynamic systems  (f) Calculate the standard Gibbs free energy for the reaction at 25°C $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $(\Delta H^o = -393.4 k J mol^{-1}, \Delta S = 2.9 j K^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5Marks)<br>(2Marks)<br>(2Marks)<br>(3Marks)<br>(4Marks) |
| Question Two (20 Marks) (a) Calculate the standard Gibbs free energy for the reaction at 25°C $H_{2(s)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(g)}$ $(\Delta H^{o} = -285.64kJmol^{-1}, \Delta S = 1.89jK^{-1})$ (b) Using $F = \frac{1}{2}(mn^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5Marks)                                                 |
| (b) Using $E = \frac{1}{2}mv^2$ show that kinetic energy of a system is given (c) Using the information given below, calculate the entropy of the reaction $2CO_{(s)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ at 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by $E_k = \frac{3}{2}RT$ (5Marks)                        |
| $S^{\theta}jK^{-1}mol$ $CO_2$ $CO_2$ $CO_3$ $CO_4$ $CO_3$ $CO_4$ $CO_4$ $CO_4$ $CO_5$ $CO_$ | (6Marks)                                                 |
| (d) (i) What is a state variables (ii) State any two examples of state variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2Marks)<br>(2Marks)                                     |
| QUESTION THREE (20 Marks) (a) (i) Using $\Delta E = q - W$ , show that $\left(\frac{T_2}{T_1}\right) = \left(\frac{V_1}{V_2}\right)^{\alpha - 1}$ for reversible adiabatic (ii) 2 moles of ideal $\alpha$ according to $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ic expansion                                             |
| (ii) 2 moles of ideal gas 300K is compressed adiabatically to $\frac{1}{4}$ of the original temperature of the gas after compression ( $C_v = 12.5jk^{-1}mol^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nal volume.<br>(10Marks)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |

#### **QUESTION FOUR (20 Marks)**

(a) (i) State the second law of thermodynamics

(2Marks)

- (ii) Starting with  $\Delta E = q W$ , Show that entropy change of a system when temperature and volume are variables is given by  $\Delta S = \left[ nC_v ln\left(\frac{T_2}{T_1}\right) + nRln\left(\frac{V_2}{V_1}\right) \right]$  (10Marks)
- (iii) For one mole of a gas when temperature and volume are variables the entropy is given by;

 $\Delta S = \left[ C_v ln \left( \frac{T_2}{T_1} \right) + R ln \left( \frac{V_2}{V_1} \right) \right].$  Using this expression show that entropy of an isothermal process is  $\Delta S = \left[ R ln \left( \frac{P_1}{P_2} \right) = R ln \left( \frac{V_2}{V_1} \right) \right]$  (5Marks)

(b) Distinguish between isobaric and isochoric processes

(3Marks)

#### **QUESTION FIVE (20 Marks)**

- (a) Starting with the first law of thermodynamics (dE = dq dw), derive  $C_p = \left(\frac{dH}{dT}\right)$
- (b) Using the ideal gas equation. Derive the numerical values of gas constant R (5 marks)
- (c) Using  $\Delta E = q W$ , show that heat of an isothermal reversible process is  $q = nRT ln \left\{ \frac{V_2}{V_1} \right\}$  (5 marks)