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QUESTION ONE (30 MARKS)

(@) It z, =3—4iand z, =-2+3i, find the value of 2z, -3z, (3mks)

(b) I'ind the distance between the complex numbers 2 +iand 1—2i (4mks)
(c) Prove that

sin(4 + B)+sin(4 - B)
cos(4+ B)+ cos(A - B)

=tan 4 (4mks)

(d) Find the general solution of the following homogenous differential equation

y +3y=0. (5mks)
(¢) Write > " as a series that starts at 71=0 . (2mks)
n=l
23 071, (3 -1 4 B
(mm_[s . 1],3_[2 ) 7],ﬁnd3A 28. (4mks)

(g) Find the Tailor series for f(x)=e"aboutx=0. (4mks)

(h) Given the serieszln, determine the following;
n=0

(1) The partial sums, . (2mks)

(i1) The sum of the series (2mks)

QUESTION TWO (20 MARKS)

Find the eigenvalues and eigenvectors for the following matrix; (20mks)
_[2 7
7= [—1 —6]

QUESTION THREE (20 MARKS)

(a) Determine the general solution of the differential equation;

d > )

LA +3ty==6t" (8mks)
dt

(b) Solve the following initial value problem concerning homogenous differential equation.
@Y tr= 0,(0)=4 (6mks)

(ii) y' + ysint =0, y(z)=1 (6mks)




OUESTION FOUR (20 MARKYS)

(a) A radioactive substance obeys the equation y’ = ky where k<0 and yis the mass of the

substance at time /. Suppose that initially, the mass of the substance is y(O) =M > 0. At what time
does half the mass remain? (10mks)

(b)

-
RL circuit diagram

The RL circuit shown above has a resistor and an inductor connected in series. A constant voltage
V'is applied when the switch is closed. The (variable) voltage across the resistor is given by

, . : : . ) di . )
V, =1R. The (variable) voltage across the inductor is given by Ri + LE =J . Once the switch is
!
closed, the current in the circuit is not constant. Instead, it will build up from zero to some steady

state. Prove that the current in the circuit is given by i = E(l - ”’) (10mks)

QUESTION FIVE (20 MARKS)

(a) Compute the following series, if it converges.

" e 4 3
(1) ;(W“?] (5mks)

(i1) Z 53,,4 (Smks)

n=0

(b) Find the Maclaurin series for f(x)= L (6mks)
-

(c) Given f(x) = e, find the following the Taylor series of f centred at3. (4mks)



